This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327857 #5 Sep 28 2019 22:24:44 %S A327857 1,1,1,2,1,1,1,2,1,1,1,2,3,1,1,4,1,1,1,2,1,1,1,2,3,3,1,2,1,1,1,4,1,1, %T A327857 1,2,3,1,3,2,1,1,1,2,1,1,1,4,5,3,3,6,1,1,1,2,1,1,1,2,7,1,1,8,1,1,1,2, %U A327857 1,1,1,2,3,3,1,2,1,3,1,4,1,1,1,2,1,1,1,2,1,1,1,2,3,1,1,4,3,5,3,6,1,3,1,6,7,1 %N A327857 a(n) = A091255(1+A059905(n), 1+A059906(n)). %H A327857 Antti Karttunen, <a href="/A327857/b327857.txt">Table of n, a(n) for n = 0..16384</a> %H A327857 <a href="/index/Ge#GF2X">Index entries for sequences operating on polynomials in ring GF(2)[X]</a> %F A327857 a(n) = A091255(1+A059905(n), 1+A059906(n)) = A091255(1+A059906(n), 1+A059905(n)). %o A327857 (PARI) %o A327857 A059905(n) = { my(t=1,s=0); while(n>0, s += (n%2)*t; n \= 4; t *= 2); (s); }; %o A327857 A059906(n) = { my(t=1,s=0); while(n>0, s += ((n%4)>=2)*t; n \= 4; t *= 2); (s); }; %o A327857 A091255sq(a,b) = fromdigits(Vec(lift(gcd(Pol(binary(a))*Mod(1, 2),Pol(binary(b))*Mod(1, 2)))),2); %o A327857 A327857(n) = A091255sq(1+A059905(n), 1+A059906(n)); %Y A327857 Cf. A059905, A059906, A091255. %K A327857 nonn %O A327857 0,4 %A A327857 _Antti Karttunen_, Sep 28 2019