This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327897 #38 Oct 04 2019 13:17:50 %S A327897 9,9009,906609,99000099,9966006699,999000000999,99956644665999, %T A327897 9999000000009999,999900665566009999,99999834000043899999, %U A327897 9999994020000204999999,999999000000000000999999,99999963342000024336999999,9999999000000000000009999999,999999974180040040081479999999 %N A327897 a(n) is the largest palindromic number formed from two numbers with n digits multiplied together. %C A327897 No formula is known to the author. %F A327897 a(n) = A308803(2*n) for n > 1. - _Andrew Howroyd_, Sep 30 2019 %F A327897 a(2n) >= (10^(2n)-1)*(10^(2n)-10^n+1). - _Chai Wah Wu_, Sep 30 2019 %e A327897 a(2) = 99 * 91 = 9009, a(3) = 993 * 913 = 906609. %o A327897 (Python) %o A327897 def is_palindrome(n): %o A327897 if n<10: return True %o A327897 n = str(n) %o A327897 midpoint = int(len(n)/2) %o A327897 return n[:midpoint] == n[-midpoint:][::-1] %o A327897 def A327897(n): %o A327897 lower_bound = 10**(n-1) - 1 %o A327897 upper_bound = 10**n - 1 %o A327897 max_palindromes = (0,0,0) %o A327897 for n1 in range(upper_bound, lower_bound, -1): %o A327897 for n2 in range(n1, lower_bound, -1): %o A327897 n = n1* n2 %o A327897 if is_palindrome(n) and n>max_palindromes[2]: %o A327897 max_palindromes = (n1, n2, n) %o A327897 if n < max_palindromes[2]: %o A327897 break %o A327897 if n1*n1 < max_palindromes[2]: %o A327897 break %o A327897 return max_palindromes %o A327897 if __name__ == '__main__': %o A327897 for n in range(1,7): %o A327897 print(A327897(n)) %Y A327897 Cf. A308803. %K A327897 nonn,base %O A327897 1,1 %A A327897 _Christopher Shaw_, Sep 29 2019 %E A327897 a(11) from _Chai Wah Wu_, Sep 30 2019 %E A327897 a(12) from _David A. Corneth_, Sep 30 2019 %E A327897 a(13)-a(15) from _Giovanni Resta_, Oct 04 2019