This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327905 #6 Oct 01 2019 09:49:50 %S A327905 2,6,8,10,12,14,18,20,21,22,24,26,28,32,33,34,35,38,40,42,44,46,48,50, %T A327905 52,55,56,57,58,62,63,66,68,70,74,75,76,77,80,82,84,86,88,91,93,94,95, %U A327905 96,98,99,100,104,106,110,112,114,116,118,122,123,125,126,132 %N A327905 FDH numbers of pairwise coprime sets. %C A327905 Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH-number of a strict partition or finite set {y_1,...,y_k} is f(y_1)*...*f(y_k). %C A327905 We use the Mathematica function CoprimeQ, meaning a singleton is not coprime unless it is {1}. %H A327905 Wolfram Language Documentation, <a href="https://reference.wolfram.com/language/ref/CoprimeQ.html">CoprimeQ</a> %e A327905 The sequence of terms together with their corresponding coprime sets begins: %e A327905 2: {1} %e A327905 6: {1,2} %e A327905 8: {1,3} %e A327905 10: {1,4} %e A327905 12: {2,3} %e A327905 14: {1,5} %e A327905 18: {1,6} %e A327905 20: {3,4} %e A327905 21: {2,5} %e A327905 22: {1,7} %e A327905 24: {1,2,3} %e A327905 26: {1,8} %e A327905 28: {3,5} %e A327905 32: {1,9} %e A327905 33: {2,7} %e A327905 34: {1,10} %e A327905 35: {4,5} %e A327905 38: {1,11} %e A327905 40: {1,3,4} %e A327905 42: {1,2,5} %t A327905 FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]]; %t A327905 nn=100;FDprimeList=Array[FDfactor,nn,1,Union]; %t A327905 FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList]; %t A327905 Select[Range[nn],CoprimeQ@@(FDfactor[#]/.FDrules)&] %Y A327905 Heinz numbers of pairwise coprime partitions are A302696 (all), A302797 (strict), A302569 (with singletons), and A302798 (strict with singletons). %Y A327905 FDH numbers of relatively prime sets are A319827. %Y A327905 Cf. A050376, A056239, A064547, A213925, A259936, A299755, A299757, A304711, A319826, A326675. %K A327905 nonn %O A327905 1,1 %A A327905 _Gus Wiseman_, Sep 30 2019