cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327908 Nonprime squarefree numbers whose prime indices all have the same Omega (A001222) and the same sum of prime indices (A056239).

This page as a plain text file.
%I A327908 #6 Oct 01 2019 09:50:26
%S A327908 1,667,2021,4331,5767,7081,7663,11021,11639,12091,13837,15049,20413,
%T A327908 23213,26123,31553,34933,35657,35723,37909,37979,38021,41449,42919,
%U A327908 44197,45113,51019,53531,58339,63407,66013,70531,72929,73373,73903,75763,83411,87361,90581
%N A327908 Nonprime squarefree numbers whose prime indices all have the same Omega (A001222) and the same sum of prime indices (A056239).
%H A327908 Gus Wiseman, <a href="/A038041/a038041.txt">Sequences counting and ranking multiset partitions whose part lengths, sums, or averages are constant or strict.</a>
%e A327908 The sequence of terms together with their prime indices begins:
%e A327908       1: {}
%e A327908     667: {9,10}
%e A327908    2021: {14,15}
%e A327908    4331: {18,20}
%e A327908    5767: {21,22}
%e A327908    7081: {21,25}
%e A327908    7663: {22,25}
%e A327908   11021: {27,28}
%e A327908   11639: {27,30}
%e A327908   12091: {28,30}
%e A327908   13837: {26,33}
%e A327908   15049: {26,35}
%e A327908   20413: {33,35}
%e A327908   23213: {34,39}
%e A327908   26123: {36,40}
%e A327908   31553: {34,49}
%e A327908   34933: {42,44}
%e A327908   35657: {42,45}
%e A327908   35723: {34,55}
%e A327908   37909: {39,49}
%t A327908 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A327908 Select[Range[10000],!PrimeQ[#]&&SquareFreeQ[#]&&SameQ@@PrimeOmega/@primeMS[#]&&SameQ@@Total/@primeMS/@primeMS[#]&]
%Y A327908 Equal omega: A327900
%Y A327908 Equal sum of prime indices: A327901
%Y A327908 Equal average of prime indices: A327902
%Y A327908 Cf. A001222, A038041, A056239, A112798, A320324, A326574, A327899.
%K A327908 nonn
%O A327908 1,2
%A A327908 _Gus Wiseman_, Sep 30 2019