This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327909 #30 Jan 24 2023 12:34:12 %S A327909 2,5,13,19,55,65,113,151,151,226,364,406,736,736,1057,1057,1409,1409, %T A327909 2059,2059,2313,2313,2313,2313,2313,2313,2313,6007,6961,6961,10305, %U A327909 12013,12013,12013,12013,12013,12026,12026,17501,17501,17501,17501,20833,20833 %N A327909 a(n) is the smallest start of a run of n or more integers having a prime factor greater than n. %C A327909 Is a(n) an upper bound on A327265(n)? A327265(n) = a(n) at n = 1, 2, 4, and 9. %H A327909 Thomas Garrison, <a href="/A327909/b327909.txt">Table of n, a(n) for n = 1..369</a> %e A327909 | prime | %e A327909 k | factorization | gpf(k) | tau(k) %e A327909 ----+---------------+--------+------- %e A327909 151 | 151 | 151 | 2 %e A327909 152 | 2^3 * 19 | 19 | 8 %e A327909 153 | 3^2 * 17 | 17 | 6 %e A327909 154 | 2 * 7 * 11 | 11 | 8 %e A327909 155 | 5 * 31 | 31 | 4 %e A327909 156 | 2^2 * 3 * 13 | 13 | 12 %e A327909 157 | 157 | 157 | 2 %e A327909 158 | 2 * 79 | 79 | 4 %e A327909 159 | 3 * 53 | 53 | 4 %p A327909 A:= Vector(100): A[1]:= 2: count:= 1: %p A327909 B:= Vector(100): %p A327909 for i from 2 while count < 100 do %p A327909 p:= max(numtheory:-factorset(i)); %p A327909 for j from 1 to min(p-1,100) do %p A327909 if B[j] = 0 then B[j]:= i fi %p A327909 od; %p A327909 for j from p to 100 do %p A327909 if B[j] > 0 and B[j] <= i-j and A[j] = 0 then A[j]:= B[j]; count:= count+1; fi %p A327909 od; %p A327909 if p <= 99 then B[p..100]:= 0 fi; %p A327909 od: %p A327909 convert(A,list); # _Robert Israel_, Jan 23 2023 %o A327909 (PARI) a(n) = {my(k=1); x=0; while(x<n, if(vecmax(factor(k++)[, 1])>n, x++, x=0)); k-n+1;} \\ _Jinyuan Wang_, Oct 26 2019 %Y A327909 Cf. A006530 (greatest prime factor of n). %Y A327909 Cf. A309981, A327265. %K A327909 nonn %O A327909 1,1 %A A327909 _Jon E. Schoenfield_, Oct 06 2019