This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327910 #9 Oct 16 2019 13:28:03 %S A327910 0,1,1,1,2,1,1,2,2,1,0,2,2,2,0,1,1,2,2,1,1,1,2,1,2,1,2,1,0,2,2,1,1,2, %T A327910 2,0,1,1,2,2,0,2,2,1,1,1,2,1,2,1,1,2,1,2,1,0,2,2,1,1,2,1,1,2,2,0,1,1, %U A327910 2,2,0,2,2,0,2,2,1,1 %N A327910 This is the reduced A317745, with primes -> 1 and prime + prime -> 2. %C A327910 This is related to Goldbach's conjecture, since entries for which the leftmost entry and the top entry are both nonzero are the sums of two primes. %C A327910 The successive antidiagonals may also be regarded as the rows of a triangle, having A101264 as outside diagonals. %F A327910 T(n, k) = A101264(n) + A101264(k). %e A327910 Beginning of the array. All elements are equal to topmost value plus leftmost value. %e A327910 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 %e A327910 1 2 2 2 1 2 2 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 %e A327910 1 2 2 2 1 2 2 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 %e A327910 1 2 2 2 1 2 2 1 2 2 1 2 1 1 2 2 1 1 2 1 2 %e A327910 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 %e A327910 1 2 2 2 1 2 2 1 2 2 1 2 1 1 2 2 1 1 2 %e A327910 1 2 2 2 1 2 2 1 2 2 1 2 1 1 2 2 1 1 %e A327910 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0 %e A327910 1 2 2 2 1 2 2 1 2 2 1 2 1 1 2 2 %e A327910 1 2 2 2 1 2 2 1 2 2 1 2 1 1 2 %e A327910 0 1 1 1 0 1 1 0 1 1 0 1 0 0 %e A327910 1 2 2 2 1 2 2 1 2 2 1 2 1 %e A327910 0 1 1 1 0 1 1 0 1 1 0 1 %e A327910 0 1 1 1 0 1 1 0 1 1 0 %e A327910 1 2 2 2 1 2 2 1 2 2 %e A327910 1 2 2 2 1 2 2 1 2 %e A327910 0 1 1 1 0 1 1 0 %e A327910 0 1 1 1 0 1 1 %e A327910 1 2 2 2 1 2 %e A327910 0 1 1 1 0 %e A327910 1 2 2 2 %e A327910 1 2 2 %e A327910 0 1 %e A327910 1 %e A327910 Note: A101264 is both outside diagonals. A101264 and A101264 + 1 are inside diagonals, determined by their positions in the outside diagonals. %t A327910 i[n_] := If[PrimeQ[2 n - 1], 2 n - 1, 0]; A101264 = Array[i, 82]; %t A327910 r[k_] := Table[A101264[[j]] + A101264[[k - j + 1]], {j, 1, k}]; %t A327910 a = Array[r, 12] // Flatten, %Y A327910 Cf. A101264, A317745. %K A327910 nonn,tabl %O A327910 1,5 %A A327910 _Fred Daniel Kline_, Oct 05 2019