This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327913 #57 Apr 09 2021 06:36:20 %S A327913 1,1,1,1,2,1,1,3,3,1,1,4,7,4,1,1,5,13,13,5,1,1,6,22,34,22,6,1,1,7,34, %T A327913 76,76,34,7,1,1,8,50,152,221,152,50,8,1,1,9,70,280,557,557,280,70,9,1, %U A327913 1,10,95,482,1264,1736,1264,482,95,10,1,1,11,125,787,2630,4766,4766,2630,787,125,11,1 %N A327913 Array read by antidiagonals: T(n,m) is the number of distinct unordered row and column sums of n X m binary matrices. %C A327913 Only matrices in which both row and columns sums are weakly increasing need to be considered. If order is also considered then the number of possibilities is given by A328887(n, m). %H A327913 Andrew Howroyd, <a href="/A327913/b327913.txt">Table of n, a(n) for n = 0..1325</a> %H A327913 Manfred Krause, <a href="https://doi.org/10.2307%2F2975191">A simple proof of the Gale-Ryser theorem</a>, American Mathematical Monthly, 1996. %H A327913 Wikipedia, <a href="https://en.wikipedia.org/wiki/Gale%E2%80%93Ryser_theorem">Gale-Ryser theorem</a> %e A327913 Array begins: %e A327913 ============================================= %e A327913 n\m | 0 1 2 3 4 5 6 7 %e A327913 ----+---------------------------------------- %e A327913 0 | 1 1 1 1 1 1 1 1 ... %e A327913 1 | 1 2 3 4 5 6 7 8 ... %e A327913 2 | 1 3 7 13 22 34 50 70 ... %e A327913 3 | 1 4 13 34 76 152 280 482 ... %e A327913 4 | 1 5 22 76 221 557 1264 2630 ... %e A327913 5 | 1 6 34 152 557 1736 4766 11812 ... %e A327913 6 | 1 7 50 280 1264 4766 15584 45356 ... %e A327913 7 | 1 8 70 482 2630 11812 45356 153228 ... %e A327913 ... %e A327913 T(2,2) = 7. The following 7 matrices each have different row/column sums. %e A327913 [0 0] [0 0] [0 1] [0 0] [0 1] [0 1] [1 1] %e A327913 [0 0] [0 1] [1 0] [1 1] [0 1] [1 1] [1 1] %o A327913 (PARI) %o A327913 T(n,m)={local(Cache=Map()); %o A327913 my(F(b, c, t, w)=my(hk=Vecsmall([b, c, t, w]), z); %o A327913 if(!mapisdefined(Cache, hk, &z), %o A327913 z = if(w&&c, sum(i=0, b, sum(j=ceil((t+i)/w), min(t+i, c), self()(i, j, t+i-j, w-1))), !t); %o A327913 mapput(Cache, hk, z)); z); %o A327913 F(n, n, 0, m) %o A327913 } %o A327913 (Python) # After PARI implementation. %o A327913 from functools import cache %o A327913 @cache %o A327913 def F(b, c, t, w): %o A327913 if w == 0: %o A327913 return 1 if t == 0 else 0 %o A327913 return sum( %o A327913 sum( %o A327913 F(i, j, t + i - j, w - 1) %o A327913 for j in range((t + i - 1) // w, min(t + i, c) + 1) %o A327913 ) %o A327913 for i in range(b + 1) %o A327913 ) %o A327913 A327913 = lambda n, m: F(n, n, 0, m) %o A327913 for n in range(10): %o A327913 print([A327913(n, m) for m in range(0, 8)]) # _Peter Luschny_, Apr 09 2021 %Y A327913 Main diagonal is A029894. %Y A327913 Cf. A028657 (nonequivalent binary n X m matrices). %Y A327913 Cf. A318396, A328887. %K A327913 nonn,tabl %O A327913 0,5 %A A327913 _Andrew Howroyd_, Oct 30 2019