A327923 Irregular triangle read by rows: Coefficients of Schick's polynomials P(n, y^2), for n >= 1.
1, 1, -2, -1, 10, -24, 16, 1, -42, 504, -2640, 7040, -9984, 7168, -2048, -1, 170, -8568, 201552, -2687360, 22573824, -127339520, 502081536, -1417641984, 2901606400, -4310958080, 4600627200, -3435134976, 1702887424, -503316480, 67108864
Offset: 1
Examples
The irregular triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 ... ------------------------------------------------------ 1: 1 2: 1 -2 3: -1 10 -24 16 4: 1 -42 504 -2640 7040 -9984 7168 -2048 ... Row n = 5: -1 170 -8568 201552 -2687360 22573824 -127339520 502081536 -1417641984 2901606400 -4310958080 4600627200 -3435134976 1702887424 -503316480 67108864. ... ---------------------------------------------------------------------------
References
- Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Bokos Druck, Zürich, 2003 (ISBN 3-9522917-0-6).
Formula
Row polynomials: P(n, y^2) = Product_{j=1..n-1} y_j(y^2), for n >= 1 (the empty product equals 1), where y_j(y^2) = -T^{[j]}(2, y) = -T(2^j, y), the j-th iteration of -T(2, y) = - 1 + 2*y^2, with Chebyshev's T polynomials (A053120).
Row polynomials linearized in T: P(n, y^2) = (-1)^(n-1)*(1/2^(n-2)) * Sum_{m=1..2^(n-2)} T(2*(2^(n-1) + 1 - 2*m), y), for n >= 2, and P(1, y^2) = 1. See the irregular triangle A261693(n-1, m) = 2^(n-1) + 1 - 2*m, n >= 2, 1 <= m <= 2^(n-2).
Irregular triangle: t(n, k) = [y^(2*k)] P(n, y^2), n >= 1, k = 0, 1, ..., 2^(n-1)-1.
Comments