cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A354057 Square array read by ascending antidiagonals: T(n,k) is the number of solutions to x^k == 1 (mod n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 4, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 3, 4, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 1, 2, 1, 1, 1, 4, 1, 4, 1, 4, 1, 2, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Jianing Song, May 16 2022

Keywords

Comments

Row n and Row n' are the same if and only if (Z/nZ)* = (Z/n'Z)*, where (Z/nZ)* is the multiplicative group of integers modulo n.
Given n, T(n,k) only depends on gcd(k,psi(n)). For the truncated version see A354060.
Each column is multiplicative.

Examples

			  n/k  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
   1   1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
   2   1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
   3   1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2
   4   1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2
   5   1  2  1  4  1  2  1  4  1  2  1  4  1  2  1  4  1  2  1  4
   6   1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2
   7   1  2  3  2  1  6  1  2  3  2  1  6  1  2  3  2  1  6  1  2
   8   1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4
   9   1  2  3  2  1  6  1  2  3  2  1  6  1  2  3  2  1  6  1  2
  10   1  2  1  4  1  2  1  4  1  2  1  4  1  2  1  4  1  2  1  4
  11   1  2  1  2  5  2  1  2  1 10  1  2  1  2  5  2  1  2  1 10
  12   1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4
  13   1  2  3  4  1  6  1  4  3  2  1 12  1  2  3  4  1  6  1  4
  14   1  2  3  2  1  6  1  2  3  2  1  6  1  2  3  2  1  6  1  2
  15   1  4  1  8  1  4  1  8  1  4  1  8  1  4  1  8  1  4  1  8
  16   1  4  1  8  1  4  1  8  1  4  1  8  1  4  1  8  1  4  1  8
  17   1  2  1  4  1  2  1  8  1  2  1  4  1  2  1 16  1  2  1  4
  18   1  2  3  2  1  6  1  2  3  2  1  6  1  2  3  2  1  6  1  2
  19   1  2  3  2  1  6  1  2  9  2  1  6  1  2  3  2  1 18  1  2
  20   1  4  1  8  1  4  1  8  1  4  1  8  1  4  1  8  1  4  1  8
		

Crossrefs

k-th column: A060594 (k=2), A060839 (k=3), A073103 (k=4), A319099 (k=5), A319100 (k=6), A319101 (k=7), A247257 (k=8).
Applying Moebius transform to the rows gives A354059.
Applying Moebius transform to the columns gives A354058.
Cf. A327924.

Programs

  • PARI
    T(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]))

Formula

If (Z/nZ)* = C_{k_1} X C_{k_2} X ... X C_{k_r}, then T(n,k) = Product_{i=1..r} gcd(k,k_r).
T(p^e,k) = gcd((p-1)*p^(e-1),k) for odd primes p. T(2,k) = 1, T(2^e,k) = 2*gcd(2^(e-2),k) if k is even and 1 if k is odd.
A327924(n,k) = Sum_{q|n} T(n,k) * (Sum_{s|n/q} mu(s)/phi(s*q)).

A327925 Irregular table read by rows: T(m,n) is the number of non-isomorphic groups G such that G is the semidirect product of C_m and C_n, where C_m is a normal subgroup of G and C_n is a subgroup of G, 1 <= n <= A002322(m).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 1, 4, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 1, 2, 1, 4, 1, 4, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1, 6, 1, 2, 2, 2, 1, 4, 1, 4, 1, 6, 1, 4, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 3, 2, 1, 4, 1, 2, 2, 2, 1, 6
Offset: 1

Views

Author

Jianing Song, Sep 30 2019

Keywords

Comments

The semidirect product of C_m and C_n has group representation G = , where r is any number such that r^n == 1 (mod m). Two groups G = and G' = are isomorphic if and only if there exists some k, gcd(k,n) = 1 such that r^k == s (mod m), in which case f(x^i*y^j) = x^i*y^(k*j) is an isomorphic mapping from G to G'.
Given m, T(m,n) only depends on the value of gcd(n,psi(m)), psi = A002322 (Carmichael lambda). So each row of A327924 is periodic with period psi(m), so we have this for an alternative version.
Every number k occurs in the table. By Dirichlet's theorem on arithmetic progressions, there exists a prime p such that p == 1 (mod 2^(k-1)), then T(p,2^(k-1)) = d(gcd(2^(k-1),p-1)) = k (see the formula below). For example, T(5,4) = 3, T(17,8) = 4, T(17,16) = 5, T(97,32) = 6, T(193,64) = 7, ...
Row m and Row m' are the same if and only if (Z/mZ)* = (Z/m'Z)*, where (Z/mZ)* is the multiplicative group of integers modulo m. The if part is clear; for the only if part, note that the two sequences {(number of x in (Z/mZ)* such that x^n = 1)}{n>=1} and {T(m,n)}{n>=1} determine each other, and the structure of a finite abelian group G is uniquely determined by the sequence {(number of x in G such that x^n = 1)}{n>=1}. - _Jianing Song, May 16 2022

Examples

			Table starts
m = 1: 1;
m = 2: 1;
m = 3: 1, 2;
m = 4: 1, 2;
m = 5: 1, 2, 1, 3;
m = 6: 1, 2;
m = 7: 1, 2, 2, 2, 1, 4;
m = 8: 1, 4;
m = 9: 1, 2, 2, 2, 1, 4;
m = 10: 1, 2, 1, 3;
m = 11: 1, 2, 1, 2, 2, 2, 1, 2, 1, 4;
m = 12: 1, 4;
m = 13: 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1, 6;
m = 14: 1, 2, 2, 2, 1, 4;
m = 15: 1, 4, 1, 6;
m = 16: 1, 4, 1, 6;
m = 17: 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5;
m = 18: 1, 2, 2, 2, 1, 4;
m = 19: 1, 2, 2, 2, 1, 4, 1, 2, 3, 2, 1, 4, 1, 2, 2, 2, 1, 6;
m = 20: 1, 4, 1, 6;
Example shows that T(21,6) = 6: The semidirect product of C_21 and C_6 has group representation G = <x, y|x^21 = y^6 = 1, yxy^(-1) = x^r>, where r = 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20. Since 2^5 == 11 (mod 21), 4^5 == 16 (mod 21), 5^5 == 17 (mod 21), 10^5 == 19 (mod 21), there are actually four pairs of isomorphic groups, giving a total of 8 non-isomorphic groups.
		

Crossrefs

Programs

  • PARI
    numord(n,q) = my(v=divisors(q),r=znstar(n)[2]); sum(i=1,#v,prod(j=1,#r,gcd(v[i],r[j]))*moebius(q/v[i]))
    T(m,n) = my(u=divisors(n)); sum(i=1,#u,numord(m,u[i])/eulerphi(u[i]))
    Row(m) = my(l=if(m>2,znstar(m)[2][1],1), R=vector(l,n,T(m,n))); R

Formula

T(m,n) = Sum_{d|n} (number of elements x such that ord(x,m) = d)/phi(d), where ord(x,m) is the multiplicative order of x modulo m, phi = A000010.
Equivalently, T(m,n) = Sum_{d|gcd(n,psi(m))} (number of elements x such that ord(x,m) = d)/phi(d). - Jianing Song, May 16 2022
For odd primes p, T(p^e,n) = d(gcd(n,(p-1)*p^(e-1))) = A051194((p-1)*p^(e-1),n), d = A000005; for e >= 3, T(2^e,n) = 2*(v2(n)+1) for even n and 1 for odd n, where v2 is the 2-adic valuation.

A354059 Square array read by ascending antidiagonals: T(n,k) is the number of elements in the multiplicative group of integers modulo n that have order k.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 3, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Jianing Song, May 16 2022

Keywords

Comments

Row n and Row n' are the same if and only if (Z/nZ)* = (Z/n'Z)*, where (Z/nZ)* is the multiplicative group of integers modulo n.
For the truncated version see A252911.

Examples

			The 7th, 9th, 14th and 18th rows of A354047 are {1,2,3,2,1,6,1,2,3,2,1,6,...}, so applying the Moebius transform gives {1,1,2,0,0,2,0,0,0,0,0,0,...}.
		

Crossrefs

Moebius transform of A354057 applied to each row.
Cf. A327924.

Programs

  • PARI
    b(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]));
    T(n,k) = sumdiv(k, d, moebius(k/d)*b(n,d))

Formula

A327924(n,k) = Sum_{d|k} T(n,k)/phi(d).
Showing 1-3 of 3 results.