A354057
Square array read by ascending antidiagonals: T(n,k) is the number of solutions to x^k == 1 (mod n).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 4, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 3, 4, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 1, 2, 1, 1, 1, 4, 1, 4, 1, 4, 1, 2, 1, 2, 1, 1, 1
Offset: 1
n/k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
5 1 2 1 4 1 2 1 4 1 2 1 4 1 2 1 4 1 2 1 4
6 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
7 1 2 3 2 1 6 1 2 3 2 1 6 1 2 3 2 1 6 1 2
8 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4
9 1 2 3 2 1 6 1 2 3 2 1 6 1 2 3 2 1 6 1 2
10 1 2 1 4 1 2 1 4 1 2 1 4 1 2 1 4 1 2 1 4
11 1 2 1 2 5 2 1 2 1 10 1 2 1 2 5 2 1 2 1 10
12 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4
13 1 2 3 4 1 6 1 4 3 2 1 12 1 2 3 4 1 6 1 4
14 1 2 3 2 1 6 1 2 3 2 1 6 1 2 3 2 1 6 1 2
15 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1 8
16 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1 8
17 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 16 1 2 1 4
18 1 2 3 2 1 6 1 2 3 2 1 6 1 2 3 2 1 6 1 2
19 1 2 3 2 1 6 1 2 9 2 1 6 1 2 3 2 1 18 1 2
20 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1 8
Applying Moebius transform to the rows gives
A354059.
Applying Moebius transform to the columns gives
A354058.
-
T(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]))
A327925
Irregular table read by rows: T(m,n) is the number of non-isomorphic groups G such that G is the semidirect product of C_m and C_n, where C_m is a normal subgroup of G and C_n is a subgroup of G, 1 <= n <= A002322(m).
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 1, 4, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 1, 2, 1, 4, 1, 4, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1, 6, 1, 2, 2, 2, 1, 4, 1, 4, 1, 6, 1, 4, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 3, 2, 1, 4, 1, 2, 2, 2, 1, 6
Offset: 1
Table starts
m = 1: 1;
m = 2: 1;
m = 3: 1, 2;
m = 4: 1, 2;
m = 5: 1, 2, 1, 3;
m = 6: 1, 2;
m = 7: 1, 2, 2, 2, 1, 4;
m = 8: 1, 4;
m = 9: 1, 2, 2, 2, 1, 4;
m = 10: 1, 2, 1, 3;
m = 11: 1, 2, 1, 2, 2, 2, 1, 2, 1, 4;
m = 12: 1, 4;
m = 13: 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1, 6;
m = 14: 1, 2, 2, 2, 1, 4;
m = 15: 1, 4, 1, 6;
m = 16: 1, 4, 1, 6;
m = 17: 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5;
m = 18: 1, 2, 2, 2, 1, 4;
m = 19: 1, 2, 2, 2, 1, 4, 1, 2, 3, 2, 1, 4, 1, 2, 2, 2, 1, 6;
m = 20: 1, 4, 1, 6;
Example shows that T(21,6) = 6: The semidirect product of C_21 and C_6 has group representation G = <x, y|x^21 = y^6 = 1, yxy^(-1) = x^r>, where r = 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20. Since 2^5 == 11 (mod 21), 4^5 == 16 (mod 21), 5^5 == 17 (mod 21), 10^5 == 19 (mod 21), there are actually four pairs of isomorphic groups, giving a total of 8 non-isomorphic groups.
-
numord(n,q) = my(v=divisors(q),r=znstar(n)[2]); sum(i=1,#v,prod(j=1,#r,gcd(v[i],r[j]))*moebius(q/v[i]))
T(m,n) = my(u=divisors(n)); sum(i=1,#u,numord(m,u[i])/eulerphi(u[i]))
Row(m) = my(l=if(m>2,znstar(m)[2][1],1), R=vector(l,n,T(m,n))); R
A354059
Square array read by ascending antidiagonals: T(n,k) is the number of elements in the multiplicative group of integers modulo n that have order k.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 3, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
The 7th, 9th, 14th and 18th rows of A354047 are {1,2,3,2,1,6,1,2,3,2,1,6,...}, so applying the Moebius transform gives {1,1,2,0,0,2,0,0,0,0,0,0,...}.
Moebius transform of
A354057 applied to each row.
-
b(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]));
T(n,k) = sumdiv(k, d, moebius(k/d)*b(n,d))
Showing 1-3 of 3 results.
Comments