A327925 Irregular table read by rows: T(m,n) is the number of non-isomorphic groups G such that G is the semidirect product of C_m and C_n, where C_m is a normal subgroup of G and C_n is a subgroup of G, 1 <= n <= A002322(m).
1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 1, 4, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 1, 2, 1, 4, 1, 4, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1, 6, 1, 2, 2, 2, 1, 4, 1, 4, 1, 6, 1, 4, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 3, 2, 1, 4, 1, 2, 2, 2, 1, 6
Offset: 1
Examples
Table starts m = 1: 1; m = 2: 1; m = 3: 1, 2; m = 4: 1, 2; m = 5: 1, 2, 1, 3; m = 6: 1, 2; m = 7: 1, 2, 2, 2, 1, 4; m = 8: 1, 4; m = 9: 1, 2, 2, 2, 1, 4; m = 10: 1, 2, 1, 3; m = 11: 1, 2, 1, 2, 2, 2, 1, 2, 1, 4; m = 12: 1, 4; m = 13: 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1, 6; m = 14: 1, 2, 2, 2, 1, 4; m = 15: 1, 4, 1, 6; m = 16: 1, 4, 1, 6; m = 17: 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5; m = 18: 1, 2, 2, 2, 1, 4; m = 19: 1, 2, 2, 2, 1, 4, 1, 2, 3, 2, 1, 4, 1, 2, 2, 2, 1, 6; m = 20: 1, 4, 1, 6; Example shows that T(21,6) = 6: The semidirect product of C_21 and C_6 has group representation G = <x, y|x^21 = y^6 = 1, yxy^(-1) = x^r>, where r = 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20. Since 2^5 == 11 (mod 21), 4^5 == 16 (mod 21), 5^5 == 17 (mod 21), 10^5 == 19 (mod 21), there are actually four pairs of isomorphic groups, giving a total of 8 non-isomorphic groups.
Links
- Jianing Song, Table of n, a(n) for n = 1..8346 (the first 200 rows)
- Math Overflow, When are two semidirect products of two cyclic groups isomorphic
Crossrefs
Programs
-
PARI
numord(n,q) = my(v=divisors(q),r=znstar(n)[2]); sum(i=1,#v,prod(j=1,#r,gcd(v[i],r[j]))*moebius(q/v[i])) T(m,n) = my(u=divisors(n)); sum(i=1,#u,numord(m,u[i])/eulerphi(u[i])) Row(m) = my(l=if(m>2,znstar(m)[2][1],1), R=vector(l,n,T(m,n))); R
Formula
T(m,n) = Sum_{d|n} (number of elements x such that ord(x,m) = d)/phi(d), where ord(x,m) is the multiplicative order of x modulo m, phi = A000010.
Equivalently, T(m,n) = Sum_{d|gcd(n,psi(m))} (number of elements x such that ord(x,m) = d)/phi(d). - Jianing Song, May 16 2022
Comments