This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327930 #9 Sep 30 2019 20:20:05 %S A327930 1,2,2,14,2,44,2,518,26,68,2,16324,2,92,76,67858,2,41756,2,42364,116, %T A327930 164,2,116569684,58,188,2678,84364,2,3609848,2,27753922,172,268,148, %U A327930 4353104756,2,292,212,528236716,2,10506584,2,256004,164996,388,2,9360895334252,86,388484,284,346108,2,1802063692,212,1495183172,316 %N A327930 Product_{d|n, d>1} prime(A003415(d)), where A003415(x) gives the arithmetic derivative of x. %H A327930 Antti Karttunen, <a href="/A327930/b327930.txt">Table of n, a(n) for n = 1..8192</a> %F A327930 a(n) = Product_{d|n, d>1} A000040(A003415(d)). %F A327930 For all n >= 2, a(n) = prime(A003415(n)) * A064989(A319356(n)). %F A327930 A001221(a(n)) = A319685(n). %F A327930 A001222(a(n)) = A032741(n). %F A327930 A007814(a(n)) = A001221(n). %F A327930 A056239(a(n)) = A319684(n). %o A327930 (PARI) %o A327930 A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415 %o A327930 A327930(n) = { my(m=1); fordiv(n,d,if((d>1), m *= prime(A003415(d)))); (m); }; %Y A327930 Cf. A000040, A001221, A001222, A003415, A007814, A056239, A064989, A319356, A319684, A319685, A327931 (rgs-transform). %K A327930 nonn %O A327930 1,2 %A A327930 _Antti Karttunen_, Sep 30 2019