cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327935 Numbers for which the smallest prime factor of their arithmetic derivative is 5.

This page as a plain text file.
%I A327935 #10 Nov 04 2022 14:42:43
%S A327935 6,46,75,106,150,166,175,226,250,266,325,346,350,406,429,466,475,526,
%T A327935 546,550,586,646,650,682,706,750,759,766,775,826,847,850,886,925,950,
%U A327935 966,1006,1050,1075,1083,1106,1126,1150,1186,1209,1246,1250,1254,1306,1326,1342,1366,1406,1419,1421,1450,1486,1525,1526,1546
%N A327935 Numbers for which the smallest prime factor of their arithmetic derivative is 5.
%C A327935 Numbers n for which A086134(n) = 5.
%C A327935 Numbers whose arithmetic derivative is an odd multiple of five, but is not a multiple of three.
%H A327935 Antti Karttunen, <a href="/A327935/b327935.txt">Table of n, a(n) for n = 1..10000</a>
%o A327935 (PARI)
%o A327935 A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
%o A327935 A086134(n) = { my(d=A003415(n)); if(d<=1,0,factor(d)[1, 1]); };
%o A327935 isA327935(n) = (5==A086134(n));
%o A327935 (Python)
%o A327935 from itertools import count, islice
%o A327935 from sympy import factorint
%o A327935 def A327935_gen(startvalue=2): # generator of terms  >= startvalue
%o A327935     return filter(lambda n: (m:=sum((n*e//p for p,e in factorint(n).items())))&1 and m%3 and not m%5, count(max(startvalue,2)))
%o A327935 A327935_list = list(islice(A327935_gen(),40)) # _Chai Wah Wu_, Nov 04 2022
%Y A327935 Cf. A003415, A086134, A235992, A327933.
%Y A327935 Subsequence of A235991, and also of A327865.
%K A327935 nonn
%O A327935 1,1
%A A327935 _Antti Karttunen_, Sep 30 2019