This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327935 #10 Nov 04 2022 14:42:43 %S A327935 6,46,75,106,150,166,175,226,250,266,325,346,350,406,429,466,475,526, %T A327935 546,550,586,646,650,682,706,750,759,766,775,826,847,850,886,925,950, %U A327935 966,1006,1050,1075,1083,1106,1126,1150,1186,1209,1246,1250,1254,1306,1326,1342,1366,1406,1419,1421,1450,1486,1525,1526,1546 %N A327935 Numbers for which the smallest prime factor of their arithmetic derivative is 5. %C A327935 Numbers n for which A086134(n) = 5. %C A327935 Numbers whose arithmetic derivative is an odd multiple of five, but is not a multiple of three. %H A327935 Antti Karttunen, <a href="/A327935/b327935.txt">Table of n, a(n) for n = 1..10000</a> %o A327935 (PARI) %o A327935 A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415 %o A327935 A086134(n) = { my(d=A003415(n)); if(d<=1,0,factor(d)[1, 1]); }; %o A327935 isA327935(n) = (5==A086134(n)); %o A327935 (Python) %o A327935 from itertools import count, islice %o A327935 from sympy import factorint %o A327935 def A327935_gen(startvalue=2): # generator of terms >= startvalue %o A327935 return filter(lambda n: (m:=sum((n*e//p for p,e in factorint(n).items())))&1 and m%3 and not m%5, count(max(startvalue,2))) %o A327935 A327935_list = list(islice(A327935_gen(),40)) # _Chai Wah Wu_, Nov 04 2022 %Y A327935 Cf. A003415, A086134, A235992, A327933. %Y A327935 Subsequence of A235991, and also of A327865. %K A327935 nonn %O A327935 1,1 %A A327935 _Antti Karttunen_, Sep 30 2019