cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327941 Expansion of e.g.f. exp(Sum_{i>=1} Sum_{j>=2} x^(i*j) / (i*j)).

This page as a plain text file.
%I A327941 #4 Oct 06 2019 03:56:03
%S A327941 1,0,1,2,15,44,595,2274,36673,247400,3660921,29194010,632617711,
%T A327941 5289743172,117393123835,1525153361354,32315717350785,433901475732944,
%U A327941 11698737221494513,168831340268759730,4894554062081828431,87212857278031619420,2398463635663863045411
%N A327941 Expansion of e.g.f. exp(Sum_{i>=1} Sum_{j>=2} x^(i*j) / (i*j)).
%F A327941 E.g.f.: exp(Sum_{k>=1} (A000005(k) - 1) * x^k / k).
%F A327941 E.g.f.: exp(Sum_{k>=1} A032741(k) * x^k / k).
%F A327941 E.g.f.: Product_{k>=2} 1 / (1 - x^k)^(1/k).
%t A327941 nmax = 22; CoefficientList[Series[Exp[Sum[(DivisorSigma[0, k] - 1) x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
%t A327941 a[n_] := a[n] = If[n == 0, 1, Sum[(DivisorSigma[0, k] - 1) a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 22}]
%Y A327941 Cf. A000005, A028342, A032741, A206303.
%K A327941 nonn
%O A327941 0,4
%A A327941 _Ilya Gutkovskiy_, Sep 30 2019