cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327942 Numbers k such that both k and k+1 are nonunitary abundant numbers (A064597).

This page as a plain text file.
%I A327942 #8 Dec 23 2020 04:10:37
%S A327942 165375,893024,1047375,1576575,2282175,2304224,2858624,3614624,
%T A327942 4068224,4096575,4597424,4975424,6591375,7574175,8555624,9511424,
%U A327942 10446975,10749375,10872224,11477024,12535424,13773375,13946624,14277375,15926624,16041375,16505775,16769024
%N A327942 Numbers k such that both k and k+1 are nonunitary abundant numbers (A064597).
%H A327942 Amiram Eldar, <a href="/A327942/b327942.txt">Table of n, a(n) for n = 1..10000</a>
%e A327942 165375 is in the sequence since both 165375 and 165376 are nonunitary abundant: nusigma(165375) = 179280 > 165375, and nusigma(165376) = 183600 > 165376 (nusigma is the sum of nonunitary divisors, A048146).
%t A327942 f[p_, e_] := (p^(e + 1) - 1)/(p - 1); nuabQ[n_] := Times @@ (f @@@ FactorInteger[n]) - Times @@ (1 + Power @@@ FactorInteger[n]) > n; s = {}; q1 = False; Do[q2 = nuabQ[n]; If[q1 && q2, AppendTo[s, n - 1]]; q1 = q2, {n, 2, 10^7}]; s
%Y A327942 Cf. A048146, A064597, A094889, A307823.
%Y A327942 Cf. A096399, A292704, A318167, A327635.
%K A327942 nonn
%O A327942 1,1
%A A327942 _Amiram Eldar_, Sep 30 2019