A335141
Numbers that are both unitary pseudoperfect (A293188) and nonunitary pseudoperfect (A327945).
Original entry on oeis.org
840, 2940, 7260, 9240, 10140, 10920, 13860, 14280, 15960, 16380, 17160, 18480, 19320, 20580, 21420, 21840, 22440, 23100, 23940, 24024, 24360, 25080, 26040, 26520, 27300, 28560, 29640, 30360, 30870, 31080, 31920, 32340, 34440, 34650, 35700, 35880, 36120, 36960
Offset: 1
840 is a term since its aliquot unitary divisors are {1, 3, 5, 7, 8, 15, 21, 24, 35, 40, 56, 105, 120, 168, 280} and 1 + 5 + 7 + 8 + 15 + 35 + 40 + 56 + 105 + 120 + 168 + 280 = 840, and its nonunitary divisors are {2, 4, 6, 10, 12, 14, 20, 28, 30, 42, 60, 70, 84, 140, 210, 420} and 70 + 140 + 210 + 420 = 840.
-
pspQ[n_] := Module[{d = Divisors[n], ud, nd, x}, ud = Select[d, CoprimeQ[#, n/#] &]; nd = Complement[d, ud]; ud = Most[ud]; Plus @@ ud >= n && Plus @@ nd >= n && SeriesCoefficient[Series[Product[1 + x^ud[[i]], {i, Length[ud]}], {x, 0, n}], n] > 0 && SeriesCoefficient[Series[Product[1 + x^nd[[i]], {i, Length[nd]}], {x, 0, n}], n] > 0]; Select[Range[10^4], pspQ]
A327946
Nonunitary pseudoperfect numbers (A327945) that equal to the sum of a subset of their nonunitary divisors in a single way.
Original entry on oeis.org
24, 36, 80, 112, 200, 312, 352, 392, 408, 416, 456, 552, 588, 684, 696, 744, 888, 984, 1032, 1088, 1116, 1128, 1216, 1272, 1332, 1416, 1464, 1472, 1548, 1608, 1692, 1704, 1752, 1856, 1896, 1908, 1936, 1984, 1992, 2124, 2136, 2196, 2288, 2328, 2412, 2424, 2472
Offset: 1
The nonunitary divisors of 36 are {2, 3, 6, 12, 18}, and {6, 12, 18} is the only subset that sums to 36.
-
nudiv[n_] := Module[{d = Divisors[n]}, Select[d, GCD[#, n/#] > 1 &]]; s = {}; Do[d = nudiv[n]; If[Total[d] < n, Continue[]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c == 1, AppendTo[s, n]], {n, 1, 700}]; s
A327947
Nonunitary pseudoperfect numbers (A327945) that equal to the sum of a subset of their nonunitary divisors in more ways than any smaller nonunitary pseudoperfect number.
Original entry on oeis.org
24, 48, 72, 96, 144, 216, 240, 288, 360, 480, 720, 1080, 1440, 2160, 2880, 3600, 4320, 5040, 7200, 7560, 10080, 15120, 20160, 25200, 30240
Offset: 1
24 is the least number which is the sum of its nonunitary divisor, thus a(1) = 24.
48 is the least number which is the sum of a subset of its nonunitary divisor in two ways: 24 + 12 + 8 + 4 and 24 + 12 + 8 + 4 + 2, thus a(2) = 48.
-
nudiv[n_] := Module[{d = Divisors[n]}, Select[d, GCD[#, n/#] > 1 &]]; s = {}; cm = 0; Do[d = nudiv[n]; If[Total[d] < n, Continue[]]; c = SeriesCoefficient[ Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c > cm, cm = c; AppendTo[s, n]], {n, 1, 1000}]; s
A327948
Nonunitary weird numbers: numbers that are nonunitary abundant but not nonunitary pseudoperfect.
Original entry on oeis.org
280, 3344, 16120, 23320, 28768, 31648, 37088, 41720, 42280, 43168, 43960, 45640, 46760, 48440, 50120, 50680, 53480, 54040, 55160, 55720, 59080, 62440, 63560, 64120, 65240, 66920, 67480, 69088, 70280, 71960, 73640, 75320, 75880, 77560, 78680, 79240, 82040
Offset: 1
-
nudiv[n_] := Module[{d = Divisors[n]}, Select[d, GCD[#, n/#] > 1 &]]; s = {}; Do[d = nudiv[n]; If[Total[d] <= n, Continue[]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c == 0, AppendTo[s, n]], {n, 1, 10^5}]; s
Showing 1-4 of 4 results.
Comments