A327946 Nonunitary pseudoperfect numbers (A327945) that equal to the sum of a subset of their nonunitary divisors in a single way.
24, 36, 80, 112, 200, 312, 352, 392, 408, 416, 456, 552, 588, 684, 696, 744, 888, 984, 1032, 1088, 1116, 1128, 1216, 1272, 1332, 1416, 1464, 1472, 1548, 1608, 1692, 1704, 1752, 1856, 1896, 1908, 1936, 1984, 1992, 2124, 2136, 2196, 2288, 2328, 2412, 2424, 2472
Offset: 1
Keywords
Examples
The nonunitary divisors of 36 are {2, 3, 6, 12, 18}, and {6, 12, 18} is the only subset that sums to 36.
Programs
-
Mathematica
nudiv[n_] := Module[{d = Divisors[n]}, Select[d, GCD[#, n/#] > 1 &]]; s = {}; Do[d = nudiv[n]; If[Total[d] < n, Continue[]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c == 1, AppendTo[s, n]], {n, 1, 700}]; s
Comments