cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327971 Bitwise XOR of trajectories of rule 30 and its mirror image, rule 86, when both are started from a lone 1 cell: a(n) = A110240(n) XOR A265281(n).

This page as a plain text file.
%I A327971 #29 Oct 06 2019 09:07:02
%S A327971 0,0,10,20,130,396,2842,4420,38610,124220,684490,1385044,8891330,
%T A327971 26281036,192525274,269101060,2454365330,8588410876,43860512138,
%U A327971 89059958420,551714970626,1663794165260,12235920695450,19683098342340,164315052318034,538162708968636,2894532467106378,6192136868790228,37503903254935874,114926395086966988,814341599153559130
%N A327971 Bitwise XOR of trajectories of rule 30 and its mirror image, rule 86, when both are started from a lone 1 cell: a(n) = A110240(n) XOR A265281(n).
%C A327971 Each term is a binary palindrome when its trailing zeros (in base 2) are omitted, that is, a term of A057890.
%C A327971 Compare the binary string illustrations drawn for the first 1024 terms of this sequence and for A327976, which has almost the same definition.
%H A327971 Antti Karttunen, <a href="/A327971/b327971.txt">Table of n, a(n) for n = 0..1023</a>
%H A327971 Antti Karttunen, <a href="/A327971/a327971.png">Terms up to a(255) drawn as binary strings, with 1 bit = 3x3 pixels resolution</a>
%H A327971 Antti Karttunen, <a href="/A327971/a327971_1.png">Terms up to a(1023) drawn as binary strings, with 1 bit = 1 pixel resolution</a>
%H A327971 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H A327971 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%F A327971 a(n) = A110240(n) XOR A265281(n).
%F A327971 a(n) = A280508(A110240(n)) = A110240(n) XOR A030101(A110240(n)).
%F A327971 a(n) = A280508(A265281(n)) = A265281(n) XOR A030101(A265281(n)).
%F A327971 For n >= 1, a(n) = (1/2) * (A327973(n-1) XOR A327976(n-1)).
%o A327971 (PARI)
%o A327971 A269160(n) = bitxor(n, bitor(2*n, 4*n)); \\ From A269160.
%o A327971 A110240(n) = if(!n,1,A269160(A110240(n-1)));
%o A327971 A269161(n) = bitxor(4*n, bitor(2*n, n));
%o A327971 A265281(n) = if(!n,1,A269161(A265281(n-1)));
%o A327971 A327971(n) = bitxor(A110240(n), A265281(n));
%o A327971 (PARI)
%o A327971 A030101(n) = if(n<1,0,subst(Polrev(binary(n)),x,2));
%o A327971 A327971write(up_to) = { my(s=1, n=0); for(n=0,up_to, write("b327971.txt", n, " ", bitxor(s, A030101(s))); s = A269160(s)); };
%o A327971 (Python)
%o A327971 def A269160(n): return(n^((n<<1)|(n<<2)))
%o A327971 def A269161(n): return((n<<2)^((n<<1)|n))
%o A327971 def genA327971():
%o A327971     '''Yield successive terms of A327971.'''
%o A327971     s1 = 1
%o A327971     s2 = 1
%o A327971     while True:
%o A327971        yield (s1^s2)
%o A327971        s1 = A269160(s1)
%o A327971        s2 = A269161(s2)
%Y A327971 Cf. A003987, A030101, A057890, A110240, A265281, A280508, A328106 (binary weight of terms).
%Y A327971 Cf. also A327972, A327973, A327976, A328103, A328104 for other such combinations.
%K A327971 nonn
%O A327971 0,3
%A A327971 _Antti Karttunen_, Oct 03 2019