cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327972 Bitwise XOR of trajectories of rule 30 and rule 150, when both are started from a lone 1 cell: a(n) = A110240(n) XOR A038184(n).

This page as a plain text file.
%I A327972 #38 Mar 07 2023 07:42:37
%S A327972 0,0,12,4,128,384,3404,740,37056,127296,794316,286532,8510656,
%T A327972 25560896,224057484,42076324,2446214016,8430013568,51732969356,
%U A327972 18062215300,553213409792,1655549411840,14630859361996,3227756349540,159219183713088,546944274202816,3411332163636556,1231354981057220,36554500089286208,109782277571646400,962314238681316620
%N A327972 Bitwise XOR of trajectories of rule 30 and rule 150, when both are started from a lone 1 cell: a(n) = A110240(n) XOR A038184(n).
%H A327972 Antti Karttunen, <a href="/A327972/b327972.txt">Table of n, a(n) for n = 0..1023</a>
%H A327972 Antti Karttunen, <a href="/A327972/a327972.png">Terms up to a(255) drawn as binary strings, with 1 bit = 3x3 pixels resolution</a>
%H A327972 Antti Karttunen, <a href="/A327972/a327972_1.png">Terms up to a(1023) drawn as binary strings, with 1 bit = 1 pixel resolution</a>
%H A327972 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H A327972 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A327972 <a href="/index/Ge#GF2X">Index entries for sequences operating on GF(2)[X]-polynomials</a>
%F A327972 a(n) = A038184(n) XOR A110240(n).
%F A327972 Conjecture: for n > 1, floor(log_2(a(n))) = 2*n - (1,2,1,4,1,2,1,5 according as n == 0..7 (mod 8), respectively). - _Alan Michael Gómez Calderón_, Mar 02 2023
%o A327972 (PARI)
%o A327972 A048727(n) = bitxor(n, bitxor(2*n, 4*n)); \\ From A048727
%o A327972 A038184(n) = if(!n,1,A048727(A038184(n-1)));
%o A327972 A269160(n) = bitxor(n, bitor(2*n, 4*n)); \\ From A269160.
%o A327972 A110240(n) = if(!n,1,A269160(A110240(n-1)));
%o A327972 A327972(n) = bitxor(A038184(n), A110240(n));
%o A327972 \\ Use this one for writing b-files:
%o A327972 A327972write(up_to) = { my(s1=1, s2=1); for(n=0,up_to, write("b327972.txt", n, " ", bitxor(s1, s2)); s1 = A048727(s1); s2 = A269160(s2)); };
%o A327972 (Python)
%o A327972 def A048727(n): return(n^(n<<1)^(n<<2))
%o A327972 def A269160(n): return(n^((n<<1)|(n<<2)))
%o A327972 def genA327972():
%o A327972     '''Yield successive terms of A327972.'''
%o A327972     s1 = 1
%o A327972     s2 = 1
%o A327972     while True:
%o A327972        yield (s1^s2)
%o A327972        s1 = A269160(s1)
%o A327972        s2 = A048727(s2)
%Y A327972 Cf. A003987, A038184, A048727, A110240, A269160.
%Y A327972 Cf. also A327971, A327973, A327976, A328103, A328104 for other such combinations.
%K A327972 nonn
%O A327972 0,3
%A A327972 _Antti Karttunen_, Oct 03 2019