cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327973 Bitwise XOR of two successive generations (centrally aligned) in the trajectory of rule 30 started from a lone 1 cell: a(n) = A110240(n) XOR 2*A110240(n-1).

This page as a plain text file.
%I A327973 #16 Oct 06 2019 09:07:42
%S A327973 5,23,93,335,1493,5351,23853,85951,382405,1369943,6103965,21996687,
%T A327973 97906325,350709671,1562619373,5631262591,25064000389,89782414999,
%U A327973 400033474525,1441615751887,6416397448021,22984338788455,102408232210605,369052763468095,1642598765228869,5883986891577303,26216498605021469,94477513773305103
%N A327973 Bitwise XOR of two successive generations (centrally aligned) in the trajectory of rule 30 started from a lone 1 cell: a(n) = A110240(n) XOR 2*A110240(n-1).
%H A327973 Antti Karttunen, <a href="/A327973/b327973.txt">Table of n, a(n) for n = 1..1024</a>
%H A327973 Antti Karttunen, <a href="/A327973/a327973.png">Terms a(1)-a(256) drawn as binary strings, with 1 bit = 3x3 pixels resolution</a>
%H A327973 Antti Karttunen, <a href="/A327973/a327973_1.png">Terms a(1)-a(1024) drawn as binary strings, with 1 bit = 1 pixel resolution</a>
%H A327973 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%F A327973 a(n) = A110240(n) XOR 2*A110240(n-1).
%o A327973 (PARI)
%o A327973 A269160(n) = bitxor(n, bitor(2*n, 4*n)); \\ From A269160.
%o A327973 A110240(n) = if(!n,1,A269160(A110240(n-1)));
%o A327973 A327973(n) = bitxor(A110240(n), 2*A110240(n-1));
%o A327973 \\ Use this one for writing b-files:
%o A327973 A327973write(up_to) = { my(s=1, t, n=0); for(n=1,up_to, t = A269160(s); write("b327973.txt", n, " ", bitxor(2*s, t)); s = t); };
%o A327973 (Python)
%o A327973 def A269160(n): return(n^((n<<1)|(n<<2)))
%o A327973 def genA327973():
%o A327973     '''Yield successive terms of A327973.'''
%o A327973     s = 1
%o A327973     while True:
%o A327973        t = A269160(s)
%o A327973        yield (t^(s<<1))
%o A327973        s = t
%Y A327973 Cf. A110240, A269160, A327974 (gives the middle bit), A328107 (binary weight of terms).
%Y A327973 Cf. also A327971, A327972, A327976, A328103, A328104 for other such combinations.
%K A327973 nonn
%O A327973 1,1
%A A327973 _Antti Karttunen_, Oct 03 2019