This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327975 #49 Mar 26 2020 07:06:48 %S A327975 5,6,9,14,33,49,62,94,177,817,961,445,913,1633,2173,2209,1146,886, %T A327975 1822,4414,19193,25829,32393,41033,47429,57929,64133,88229,101753, %U A327975 111173,116729,129413,138233,148553,160229,173093,183929,188453,208613,216773,232229,235913,244229,249929,257573,262793,272633,278153,282533,288329,294473,304613,316229,320933,322853,323429,327653,328313,1155,2649 %N A327975 Breadth-first reading of the subtree rooted at 5 of the tree where each parent node is the arithmetic derivative (A003415) of all its children. %C A327975 Permutation of A328115. %C A327975 The branching degree of vertex v is given by A099302(v). %C A327975 Leaves form a subsequence of A098700. %C A327975 Most terms of A189760 (apart from 0, 1, 2, 414, ...) seem to be located in this tree, in positions where they have no smaller siblings. %C A327975 For any number k at level n (where 5 is at level 2), we have A256750(k) = A327966(k) = n. %C A327975 Question: Does this subtree contain infinitely long paths? How many? Cf. conjecture number 8 in Ufnarovski and Ahlander paper, and a similar tree starting from 7, A327977. %H A327975 Victor Ufnarovski and Bo Ahlander, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Ufnarovski/ufnarovski.html">How to Differentiate a Number</a>, J. Integer Seqs., Vol. 6, 2003. %e A327975 Because we have A003415(5) = 1, A003415(6) = 5, A003415(9) = 6, A003415(14) = 9, A003415(33) = A003415(49) = 14, A003415(62) = 33, etc, this subtree is laid out as below. The terms of this sequence are obtained by scanning each successive level of the tree from left to right, from the node 5 onward: %e A327975 (0) %e A327975 | %e A327975 (1) %e A327975 | %e A327975 5 %e A327975 | %e A327975 6 %e A327975 | %e A327975 9 %e A327975 | %e A327975 14________________ %e A327975 | | %e A327975 33 49 %e A327975 | | %e A327975 62________ 94_____________________________ %e A327975 | | | | | | | | %e A327975 | | | | | | | | %e A327975 177 817 961 445 913 1633 2173 2209 %e A327975 | | | | %e A327975 | | | | %e A327975 1146 886 1822 4414 %e A327975 | | | | %e A327975 | | | | %e A327975 (19193, (1155, (19921, ..., 829921) (22045, ..., 4870849) %e A327975 25829, 2649, [49 children for 4414] %e A327975 ..., ..., [27 children for 1822] %e A327975 328313) 196249) %e A327975 [19 children for 886] %e A327975 [38 children %e A327975 for 1146] %e A327975 The row lengths thus start as: 1, 1, 1, 1, 2, 2, 8, 4, 133 (= 38+19+27+49), ... %o A327975 (PARI) %o A327975 A002620(n) = ((n^2)>>2); %o A327975 A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415 %o A327975 A327975list(e) = { my(lista=List([5]), f); for(n=1, e, f = lista[n]; for(k=1,1+A002620(f),if(A003415(k)==f, listput(lista,k)))); Vec(lista); }; %o A327975 v328975 = A327975list(21); %o A327975 A327975(n) = v328975[n]; %o A327975 (Sage) # uses[A003415] %o A327975 def A327975(): %o A327975 '''Breadth-first reading of irregular subtree rooted at 5, defined by the edge-relation A003415(child) = parent.''' %o A327975 yield 5 %o A327975 for x in A327975(): %o A327975 for k in [1 .. 1+(x*x)//2]: %o A327975 if A003415(k) == x: yield k %o A327975 def take(n, g): %o A327975 '''Returns a list composed of the next n elements returned by generator g.''' %o A327975 z = [] %o A327975 if 0 == n: return z %o A327975 for x in g: %o A327975 z.append(x) %o A327975 if n > 1: n = n-1 %o A327975 else: return(z) %o A327975 take(60, A327975()) %Y A327975 Cf. A003415, A098699, A098700, A099302, A099303, A099307, A099308, A189760, A256750, A327966, A327968, A328115. %Y A327975 Cf. A327977 for the subtree starting from 7, and also A263267 for another similar tree. %K A327975 nonn,tabf %O A327975 1,1 %A A327975 _Antti Karttunen_, Oct 02 2019