cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327976 Bitwise XOR of trajectories (centrally aligned) of rule 30, and its mirror image, rule 86, when both are started from a lone 1-bit, with the latter delayed by one step: a(n) = A110240(n) XOR 2*A265281(n-1).

This page as a plain text file.
%I A327976 #17 Oct 05 2019 18:21:01
%S A327976 5,23,73,359,1233,6143,19225,93495,325729,1518895,4833289,23453735,
%T A327976 81443089,398815039,1271974489,6168932215,21231239841,99197620591,
%U A327976 314863189193,1541326542823,5312985402193,26258203294847,82884499362201,400683454289591,1406328980294113,6532877164215983,20744329255918985,100303645024039591
%N A327976 Bitwise XOR of trajectories (centrally aligned) of rule 30, and its mirror image, rule 86, when both are started from a lone 1-bit, with the latter delayed by one step: a(n) = A110240(n) XOR 2*A265281(n-1).
%H A327976 Antti Karttunen, <a href="/A327976/b327976.txt">Table of n, a(n) for n = 1..1024</a>
%H A327976 Antti Karttunen, <a href="/A327976/a327976.png">Terms a(1)-a(256) drawn as binary strings, with 1 bit = 3x3 pixels resolution</a>
%H A327976 Antti Karttunen, <a href="/A327976/a327976_1.png">Terms a(1)-a(1024) drawn as binary strings, with 1 bit = 1 pixel resolution</a>
%H A327976 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%F A327976 a(n) = A110240(n) XOR 2*A265281(n-1) = A110240(n) XOR 2*A030101(A110240(n-1)).
%o A327976 (PARI)
%o A327976 A269160(n) = bitxor(n, bitor(2*n, 4*n)); \\ From A269160.
%o A327976 A110240(n) = if(!n,1,A269160(A110240(n-1)));
%o A327976 A327973(n) = bitxor(A110240(n), 2*A110240(n-1));
%o A327976 A269161(n) = bitxor(4*n, bitor(2*n, n));
%o A327976 A265281(n) = if(!n,1,A269161(A265281(n-1)));
%o A327976 A327976(n) = bitxor(A110240(n), 2*A265281(n-1));
%o A327976 \\ Use this one for writing b-files:
%o A327976 A030101(n) = if(n<1,0,subst(Polrev(binary(n)),x,2));
%o A327976 A327976write(up_to) = { my(s=1, t, n=0); for(n=1,up_to, t = A269160(s); write("b327976.txt", n, " ", bitxor(2*A030101(s), t)); s = t); };
%o A327976 (Python)
%o A327976 def A269160(n): return(n^((n<<1)|(n<<2)))
%o A327976 def A269161(n): return((n<<2)^((n<<1)|n))
%o A327976 def genA327976():
%o A327976     '''Yield successive terms of A327976.'''
%o A327976     s1 = 1
%o A327976     s2 = 1
%o A327976     while True:
%o A327976        s1 = A269160(s1)
%o A327976        yield (s1^(s2<<1))
%o A327976        s2 = A269161(s2)
%Y A327976 Cf. A110240, A265281, A269160, A269161, A030101, A327974 (gives the middle bit), A328108 (binary weight).
%Y A327976 Cf. also A327971, A327972, A327973, A328103, A328104 for other such combinations.
%K A327976 nonn
%O A327976 1,1
%A A327976 _Antti Karttunen_, Oct 04 2019