This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327980 #15 Jun 26 2023 14:35:22 %S A327980 4,1,3,1,1,2,3,1,2,1,4,2,4,1,4,2,2,3,1,1,1,3,1,2,2,3,2,2,7,1,1,1,5,1, %T A327980 1,2,2,4,1,1,1,1,2,1,2,3,1,1,4,1,1,3,3,3,2,1,1,1,1,1,1,2,1,1,6,4,2,1, %U A327980 4,1,1,4,2,4,1,1,1,1,3,1,2,1,1,3,1,5,1,7,1,1,1,1,1,8,3,1,2,3,4,1,1,1,1 %N A327980 Distances between successive zeros in A051023, the middle column of rule-30 1-D cellular automaton, when started from a lone 1 cell. %C A327980 First differences of A327985, which gives indices of zeros in A051023. %H A327980 Antti Karttunen, <a href="/A327980/b327980.txt">Table of n, a(n) for n = 1..100000</a> %H A327980 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %F A327980 a(n) = A327985(1+n) - A327985(n). %e A327980 The evolution of one-dimensional cellular automaton rule 30 proceeds as follows, when started from a single alive (1) cell: %e A327980 0: (1) %e A327980 1: 1(1)1 %e A327980 2: 11(0)01 %e A327980 3: 110(1)111 %e A327980 4: 1100(1)0001 %e A327980 5: 11011(1)10111 %e A327980 6: 110010(0)001001 %e A327980 7: 1101111(0)0111111 %e A327980 8: 11001000(1)11000001 %e A327980 9: 110111101(1)001000111 %e A327980 10: 1100100001(0)1111011001 %e A327980 11: 11011110011(0)10000101111 %e A327980 12: 110010001110(0)110011010001 %e A327980 When noting up the distances between successive 0's in its central column (indicated here with parentheses), we obtain 6-2 (as the first 0 is on row 2, and the second is on row 6), 7-6, 10-7, 11-10, 12-11, ..., that is, the first terms of this sequence: 4, 1, 3, 1, 1, ... %t A327980 A327980list[upto_]:=Differences[Flatten[Position[CellularAutomaton[30,{{1},0},{upto,{{0}}}],0]]];A327980list[300] (* _Paolo Xausa_, Jun 01 2023 *) %o A327980 (PARI) %o A327980 up_to = 105; %o A327980 A269160(n) = bitxor(n, bitor(2*n, 4*n)); %o A327980 A327980list(up_to) = { my(v=vector(up_to), s=25, n=2, on=n, k=0); while(k<up_to, n++; s = A269160(s); if(!((s>>n)%2), k++; v[k] = (n-on); on=n)); (v); } %o A327980 v327980 = A327980list(up_to); %o A327980 A327980(n) = v327980[n]; %Y A327980 Cf. A051023, A110240, A245549, A269160, A327981, A327983, A327985. %K A327980 nonn %O A327980 1,1 %A A327980 _Antti Karttunen_, Oct 03 2019