This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327990 #9 Oct 09 2019 01:58:49 %S A327990 0,1,3,1,7,3,1,9,15,7,3,1,19,17,31,9,15,7,3,1,21,39,35,33,63,19,17,31, %T A327990 9,15,7,3,1,43,41,79,37,71,67,65,127,21,39,35,33,63,19,17,31,9,15,7,3, %U A327990 1 %N A327990 The Fibonacci Codes. Irregular triangle T(n, k) with n >= 0 and 0 <= k < A000045(n+1). %C A327990 The Fibonacci codes are binary strings enumerated in an irregular triangle FC(n, k). The first few are shown below in the Example section. %C A327990 The Fibonacci codes are for n > 1 defined recursively FC(n) = C(n) concatenated with FC(n-1), where C(n) are the conjugates of the compositions of n which do not have '1' as a part and the parts of which were reduced by 1. The recurrence is based in FC(0) = '' (empty string) and FC(1) = '0'. %C A327990 The Fibonacci numbers are defined F(n) = A309896(2,n) = A000045(n+1) for n >= 0. Row FC(n) contains F(n) codes. A nonzero code is a code that does not consist entirely of zeros. The number of nonzero codes in row n is A001924(n-3) for n>=3. %C A327990 Fibonacci codes are represented here through %C A327990 T(n, k) = Sum_{j=0..m} (c[j] + 1)*2^j, %C A327990 where c = FC(n, k) and m = length(FC(n, k)). %e A327990 The Fibonacci codes start: %e A327990 [0] [[]] %e A327990 [1] [[0]] %e A327990 [2] [[00][0]] %e A327990 [3] [[000][00][0]] %e A327990 [4] [[010][0000][000][00][0]] %e A327990 [5] [[0010][0100][00000][010][0000][000][00][0]] %e A327990 [6] [[0110][00010][00100][01000][000000][0010][0100][00000][010][0000][000][00][0]] %e A327990 [7] [[00110][01010][000010][01100][000100][001000][010000][0000000][0110][00010][00100][01000][000000][0010][0100][00000][010][0000][000][00][0]] %e A327990 The encoding of the Fibonacci codes start: %e A327990 [0] [0] %e A327990 [1] [1] %e A327990 [2] [3, 1] %e A327990 [3] [7, 3, 1] %e A327990 [4] [9, 15, 7, 3, 1] %e A327990 [5] [19, 17, 31, 9, 15, 7, 3, 1] %e A327990 [6] [21, 39, 35, 33, 63, 19, 17, 31, 9, 15, 7, 3, 1] %e A327990 [7] [43, 41, 79, 37, 71, 67, 65, 127, 21, 39, 35, 33, 63, 19, 17, 31, 9, 15, 7, 3, 1] %o A327990 (SageMath) %o A327990 @cached_function %o A327990 def FibonacciCodes(n): %o A327990 if n == 0 : return [[]] %o A327990 if n == 1 : return [[0]] %o A327990 A = [c.conjugate() for c in Compositions(n) if not(1 in c)] %o A327990 B = [[i-1 for i in a] for a in A] %o A327990 return B + FibonacciCodes(n-1) %o A327990 def A327990row(n): %o A327990 FC = FibonacciCodes(n) %o A327990 B = lambda C: sum((c+1)*2^i for (i, c) in enumerate(C)) %o A327990 return [B(c) for c in FC] %o A327990 for n in (0..6): print(A327990row(n)) %Y A327990 Cf. A309896, A000045, A001924. %K A327990 nonn,tabf %O A327990 0,3 %A A327990 _Peter Luschny_, Oct 08 2019