This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327992 #33 Mar 17 2020 15:19:08 %S A327992 1,11,111,101,1111,1101,1011,11111,1001,11101,11011,10111,111111, %T A327992 11001,10101,10011,111101,111011,110111,101111,1111111,10001,111001, %U A327992 110101,101101,110011,101011,100111,1111101,1111011,1110111,1101111,1011111,11111111 %N A327992 The binary Fibonacci compositions. Irregular triangle with n >= 0 where the length of row n is Fibonacci(n) for n > 0. %C A327992 Taking up an idea of Cayley the binary Fibonacci compositions are defined as the conjugates of the compositions of n + 1 which do not have a part '1'. a(0) = 1 by convention and for n > 0 the representation of the composition c is given by Sum_{c} (2 - c[j])*2^j, where the c[j] are the parts of the composition c. With this interpretation the sequence is a permutation of the positive odd numbers (A005408). %D A327992 A. Cayley, Theorems in Trigonometry and on Partitions, Messenger of Mathematics, 5 (1876), pp. 164, 188. Also in Mathematical Papers Vol. 10, n. 634, p. 16. %H A327992 Peter Luschny, <a href="/A327992/b327992.txt">Table of n, a(n) for row 0..19</a> %F A327992 The number of zeros in all binary Fibonacci compositions of n equal the number of elements in all subsets of {1, 2, ..., n} with no consecutive integers. (For example, the number of zeros in row 7 (see the triangle below) is 20 = A001629(6).) %e A327992 The triangle starts: %e A327992 [0] [ 1] %e A327992 [1] [ 11] %e A327992 [2] [ 111] %e A327992 [3] [ 101, 1111] %e A327992 [4] [ 1101, 1011, 11111] %e A327992 [5] [ 1001, 11101, 11011, 10111, 111111] %e A327992 [6] [11001, 10101, 10011, 111101, 111011, 110111, 101111, 1111111] %e A327992 [7] [10001, 111001, 110101, 101101, 110011, 101011, 100111, 1111101, 1111011, 1110111, 1101111, 1011111, 11111111] %e A327992 . %e A327992 For instance, to compute T(7, 2) start with the composition [2, 3, 3]. Then take the conjugate, normalize the parts with 2 - c[j] and then represent the digits as an integer. The steps are: %e A327992 [2, 3, 3] -> [1, 1, 2, 1, 2, 1] -> [1, 1, 0, 1, 0, 1] -> 110101 = T(7, 2). %o A327992 (SageMath) %o A327992 import functools %o A327992 def alpha(P, Q): # order of compositions %o A327992 if len(P) < len(Q): return int(-1) %o A327992 if len(P) == len(Q): %o A327992 for i in range(len(P)): %o A327992 if P[i] < Q[i]: return int(-1) %o A327992 if P[i] > Q[i]: return int(1) %o A327992 return int(0) %o A327992 return int(0) %o A327992 def compositions(n): %o A327992 A = [c.conjugate() for c in Compositions(n+1) if not(1 in c)] %o A327992 B = [[2-i for i in a] for a in A] %o A327992 sorted(B, key = functools.cmp_to_key(alpha)) %o A327992 return B %o A327992 def Int(c): # convert to decimal integer representation %o A327992 s = "" %o A327992 for t in c: s += str(t) %o A327992 return Integer(s) if s else 1 %o A327992 def A327992row(n): %o A327992 if n == 0: return [1] %o A327992 return [Int(c) for c in compositions(n)] %o A327992 for n in (0..8): print(A327992row(n)) %Y A327992 Cf. A000045, A001629, A327993 (row sums). %K A327992 nonn,tabf %O A327992 0,2 %A A327992 _Peter Luschny_, Oct 12 2019