This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327997 #35 Apr 19 2025 14:36:16 %S A327997 1,3,1,9,7,1,27,38,12,1,81,192,101,18,1,243,969,755,215,25,1,729,5115, %T A327997 5494,2205,400,33,1,2187,29322,40971,21469,5355,679,42,1,6561,187992, %U A327997 323658,209356,66619,11452,1078,52,1,19683,1370745,2764926,2111318,813645,176295,22302,1626,63,1 %N A327997 Triangle read by rows: coefficients of the polynomials given by KummerU(-n, 1 - n - x, 3). %C A327997 KummerU(-n, 1-n-x, 1) are the Charlier polynomials with coefficients in A094816, the coefficients of KummerU(-n, 1-n-x, 2) are in |A137346|. %C A327997 The exponential generating function of this family of sequences of polynomials is in its general form (1-t)^(-x)*exp(alpha*t) with a parameter alpha. %F A327997 T(n, k) = n!*[x^k] p(n) where p(n) = [t^n] exp(3*t)*(1-t)^(-x). %F A327997 From _Igor Victorovich Statsenko_, Feb 14 2025: (Start) %F A327997 T(m, n, k) = Sum_{i=0..n} Stirling1(n-i, k)*binomial(n, i)*m^(i)*(-1)^(n-k), for m = -3. %F A327997 The triangle T(n,k) is a representative of the parametric family of triangles T(m,n,k), whose columns are the coefficients of the standard expansion of the function f(x) = (-log(1-x))^(k)*exp(-m*x)/k! for the case m=-3. (End) %e A327997 The triangle starts: %e A327997 1; %e A327997 3, 1; %e A327997 9, 7, 1; %e A327997 27, 38, 12, 1; %e A327997 81, 192, 101, 18, 1; %e A327997 243, 969, 755, 215, 25, 1; %e A327997 729, 5115, 5494, 2205, 400, 33, 1; %e A327997 2187, 29322, 40971, 21469, 5355, 679, 42, 1; %e A327997 6561, 187992, 323658, 209356, 66619, 11452, 1078, 52, 1; %e A327997 19683, 1370745, 2764926, 2111318, 813645, 176295, 22302, 1626, 63, 1; %p A327997 egf := exp(3*t)*(1-t)^(-x): ser := series(egf, t, 12): p := n -> coeff(ser, t, n): %p A327997 seq(print(n!*seq(coeff(p(n), x, k), k=0..n)), n=0..9); %t A327997 p [n_] := HypergeometricU[-n, 1 - n - x, 3]; %t A327997 Table[CoefficientList[p[n], x], {n, 0, 9}] // Flatten %o A327997 (PARI) T(n, k) = sum(j=k, n, 3^(n-j)*binomial(n, j)*abs(stirling(j, k, 1))); \\ _Seiichi Manyama_, Apr 19 2025 %Y A327997 A094816 (z=1), |A137346| (z=2), this sequence (z=3). %Y A327997 Columns k=0..3 give A000244, A346395, A381052, A382701. %Y A327997 Row sums in A053486. %K A327997 nonn,tabl %O A327997 0,2 %A A327997 _Peter Luschny_, Oct 27 2019