A328015 Decimal expansion of the growth constant for the number of terms of A328014 (numbers whose powerful part is larger than their powerfree part).
1, 1, 1, 5, 4, 3, 6, 6, 3, 1, 1, 1, 1, 0, 1, 3, 6, 9, 8, 9, 3, 1, 9, 3, 4, 3, 0, 2, 9, 4, 1, 0, 9, 6, 3, 2, 7, 0, 3, 3, 2, 8, 6, 6, 4, 9, 1, 1, 3, 0, 5, 3, 1, 6, 1, 6, 7, 1, 1, 4, 7, 6, 3, 9, 5, 7, 6, 8, 0, 3, 0, 7, 0, 3, 2, 1, 1, 7, 2, 4, 6, 8, 3, 7, 7, 2, 3
Offset: 1
Examples
1.115436631111013698931934302941096327033286649113053...
Links
- Maurice-Étienne Cloutier, Jean-Marie De Koninck, and Nicolas Doyon, On the powerful and squarefree parts of an integer, Journal of Integer Sequences, Vol. 17 (2014), Article 14.6.6.
Programs
-
Mathematica
$MaxExtraPrecision = 500; m = 500; f[x_] := (1 - x)*(1 + (1 - x)*x/(1 + x^(3/2))); c = LinearRecurrence[{2, -3, 2, 1, -3, 3, -1}, {0, 0, 0, -8, -5, 6, 14}, m]; RealDigits[(4/3)*(Zeta[3/2]/Zeta[3])*f[1/2]*f[1/3]*Exp[NSum[Indexed[c, n]*(PrimeZetaP[n/2] - 1/2^(n/2) - 1/3^(n/2))/n, {n, 3, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
Formula
Equals (4/3)*(zeta(3/2)/zeta(3)) * Product_{p prime} (1 - 1/p)*(1 + (1-1/p)/(p*(1 + 1/p^(3/2)))).
Comments