cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328023 Heinz number of the multiset of differences between consecutive divisors of n.

This page as a plain text file.
%I A328023 #8 Oct 03 2019 08:39:22
%S A328023 1,2,3,6,7,20,13,42,39,110,29,312,37,374,261,798,53,2300,61,3828,903,
%T A328023 1426,79,18648,497,2542,2379,21930,107,86856,113,42294,4503,5546,2247,
%U A328023 475800,151,7906,8787,370620,173,843880,181,249798,92547,12118,199,5965848
%N A328023 Heinz number of the multiset of differences between consecutive divisors of n.
%C A328023 The Heinz number of an integer partition or multiset {y_1,...,y_k} is prime(y_1)*...*prime(y_k).
%F A328023 A056239(a(n)) = n - 1. In words, the integer partition with Heinz number a(n) is an integer partition of n - 1.
%F A328023 A055396(a(n)) = A060680(n).
%F A328023 A061395(a(n)) = A060681(n).
%F A328023 A001221(a(n)) = A060682(n).
%F A328023 A001222(a(n)) = A000005(n).
%e A328023 The sequence of terms together with their prime indices begins:
%e A328023             1: ()
%e A328023             2: (1)
%e A328023             3: (2)
%e A328023             6: (2,1)
%e A328023             7: (4)
%e A328023            20: (3,1,1)
%e A328023            13: (6)
%e A328023            42: (4,2,1)
%e A328023            39: (6,2)
%e A328023           110: (5,3,1)
%e A328023            29: (10)
%e A328023           312: (6,2,1,1,1)
%e A328023            37: (12)
%e A328023           374: (7,5,1)
%e A328023           261: (10,2,2)
%e A328023           798: (8,4,2,1)
%e A328023            53: (16)
%e A328023          2300: (9,3,3,1,1)
%e A328023            61: (18)
%e A328023          3828: (10,5,2,1,1)
%e A328023 For example, the divisors of 6 are {1,2,3,6}, with differences {1,1,3}, with Heinz number 20, so a(6) = 20.
%t A328023 Table[Times@@Prime/@Differences[Divisors[n]],{n,100}]
%Y A328023 The sorted version is A328024.
%Y A328023 a(n) is the Heinz number of row n of A193829, A328025, or A328027.
%Y A328023 Cf. A000005, A027750, A056239, A060682, A060683, A112798, A129308, A193829.
%K A328023 nonn
%O A328023 1,2
%A A328023 _Gus Wiseman_, Oct 02 2019