This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328023 #8 Oct 03 2019 08:39:22 %S A328023 1,2,3,6,7,20,13,42,39,110,29,312,37,374,261,798,53,2300,61,3828,903, %T A328023 1426,79,18648,497,2542,2379,21930,107,86856,113,42294,4503,5546,2247, %U A328023 475800,151,7906,8787,370620,173,843880,181,249798,92547,12118,199,5965848 %N A328023 Heinz number of the multiset of differences between consecutive divisors of n. %C A328023 The Heinz number of an integer partition or multiset {y_1,...,y_k} is prime(y_1)*...*prime(y_k). %F A328023 A056239(a(n)) = n - 1. In words, the integer partition with Heinz number a(n) is an integer partition of n - 1. %F A328023 A055396(a(n)) = A060680(n). %F A328023 A061395(a(n)) = A060681(n). %F A328023 A001221(a(n)) = A060682(n). %F A328023 A001222(a(n)) = A000005(n). %e A328023 The sequence of terms together with their prime indices begins: %e A328023 1: () %e A328023 2: (1) %e A328023 3: (2) %e A328023 6: (2,1) %e A328023 7: (4) %e A328023 20: (3,1,1) %e A328023 13: (6) %e A328023 42: (4,2,1) %e A328023 39: (6,2) %e A328023 110: (5,3,1) %e A328023 29: (10) %e A328023 312: (6,2,1,1,1) %e A328023 37: (12) %e A328023 374: (7,5,1) %e A328023 261: (10,2,2) %e A328023 798: (8,4,2,1) %e A328023 53: (16) %e A328023 2300: (9,3,3,1,1) %e A328023 61: (18) %e A328023 3828: (10,5,2,1,1) %e A328023 For example, the divisors of 6 are {1,2,3,6}, with differences {1,1,3}, with Heinz number 20, so a(6) = 20. %t A328023 Table[Times@@Prime/@Differences[Divisors[n]],{n,100}] %Y A328023 The sorted version is A328024. %Y A328023 a(n) is the Heinz number of row n of A193829, A328025, or A328027. %Y A328023 Cf. A000005, A027750, A056239, A060682, A060683, A112798, A129308, A193829. %K A328023 nonn %O A328023 1,2 %A A328023 _Gus Wiseman_, Oct 02 2019