cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328024 Heinz numbers of multisets representing the differences between some positive integer's consecutive divisors.

This page as a plain text file.
%I A328024 #6 Oct 03 2019 08:39:40
%S A328024 1,2,3,6,7,13,20,29,37,39,42,53,61,79,107,110,113,151,173,181,199,239,
%T A328024 261,271,281,312,317,349,359,374,397,421,457,497,503,541,557,577,593,
%U A328024 613,701,733,769,787,798,857,863,903,911,953,983,1021,1061,1069,1151
%N A328024 Heinz numbers of multisets representing the differences between some positive integer's consecutive divisors.
%C A328024 The Heinz number of an integer partition or multiset {y_1,...,y_k} is prime(y_1)*...*prime(y_k).
%C A328024 There is exactly one entry with any given sum of prime indices A056239.
%e A328024 The sequence of terms together with their prime indices begins:
%e A328024      1: {}
%e A328024      2: {1}
%e A328024      3: {2}
%e A328024      6: {1,2}
%e A328024      7: {4}
%e A328024     13: {6}
%e A328024     20: {1,1,3}
%e A328024     29: {10}
%e A328024     37: {12}
%e A328024     39: {2,6}
%e A328024     42: {1,2,4}
%e A328024     53: {16}
%e A328024     61: {18}
%e A328024     79: {22}
%e A328024    107: {28}
%e A328024    110: {1,3,5}
%e A328024    113: {30}
%e A328024    151: {36}
%e A328024    173: {40}
%e A328024    181: {42}
%e A328024    199: {46}
%e A328024    239: {52}
%e A328024    261: {2,2,10}
%e A328024    271: {58}
%e A328024    281: {60}
%e A328024    312: {1,1,1,2,6}
%e A328024 For example, the divisors of 8 are {1,2,4,8}, with differences {1,2,4}, with Heinz number 42, so 42 belongs to the sequence.
%t A328024 nn=1000;
%t A328024 Select[Union[Table[Times@@Prime/@Differences[Divisors[n]],{n,nn}]],#<=nn&]
%Y A328024 A permutation of A328023.
%Y A328024 Also the set of possible Heinz numbers of rows of A193829, A328025, or A328027.
%Y A328024 Cf. A001222, A000005, A027750, A056239, A060680, A060681, A060682, A112798.
%K A328024 nonn
%O A328024 1,2
%A A328024 _Gus Wiseman_, Oct 02 2019