cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328042 Number of parts in all proper twice partitions of n.

This page as a plain text file.
%I A328042 #13 Dec 10 2020 03:27:42
%S A328042 3,21,61,205,474,1246,2723,6277,12961,28682,56976,118919,234715,
%T A328042 473988,913011,1807211,3430048,6648397,12500170,23764885,44174088,
%U A328042 83090853,152803509,283387971,517516615,949775754,1719088271,3127641937,5618833687,10133255636
%N A328042 Number of parts in all proper twice partitions of n.
%H A328042 Vaclav Kotesovec, <a href="/A328042/b328042.txt">Table of n, a(n) for n = 3..5000</a> (terms 3..2000 from Alois P. Heinz)
%p A328042 b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
%p A328042      `if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
%p A328042          (h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
%p A328042         b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
%p A328042     end:
%p A328042 a:= n-> (k-> add(b(n$2, i)[2]*(-1)^(k-i)*binomial(k, i), i=0..k))(2):
%p A328042 seq(a(n), n=3..35);
%t A328042 b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/ h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
%t A328042 a[n_] := With[{k = 2}, Sum[b[n, n, i][[2]] (-1)^(k-i) Binomial[k, i], {i, 0, k}]];
%t A328042 a /@ Range[3, 35] (* _Jean-François Alcover_, Dec 10 2020, after _Alois P. Heinz_ *)
%Y A328042 Column k=2 of A327631.
%Y A328042 Cf. A327769.
%K A328042 nonn
%O A328042 3,1
%A A328042 _Alois P. Heinz_, Oct 02 2019