A328044 Number of chains of binary matrices of order n.
1, 3, 299, 28349043, 21262618727925419, 426789461753903103302333992563, 576797123806621878513443912437627670334052360619, 110627172261659730424051586605958905845740712964061737226074854597705843
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..20 (first 11 terms from Rajesh Kumar Mohapatra)
- S. R. Kannan and Rajesh Kumar Mohapatra, Counting the Number of Non-Equivalent Classes of Fuzzy Matrices Using Combinatorial Techniques, arXiv preprint arXiv:1909.13678 [math.GM], 2019.
- V. Murali, Combinatorics of counting finite fuzzy subsets, Fuzzy Sets and Systems, 157(17)(2006), 2403-2411.
- V. Murali and B. Makamba, Finite Fuzzy Sets, International Journal of General Systems, Vol. 34 (1) (2005), pp. 61-75.
- R. B. Nelsen and H. Schmidt, Jr., Chains in power sets, Math. Mag., 64 (1991), 23-31.
Crossrefs
Programs
-
Maple
# P are the polynomials defined in A007047. A328044 := n -> 2^(n^2)*subs(x=1/2, P(n^2, x)): seq(A328044(n), n=0..7); # Peter Luschny, Oct 10 2019
-
Mathematica
Array[2 PolyLog[-#^2, 1/2] - 1 &, 8, 0] (* Michael De Vlieger, Oct 05 2019, after Jean-François Alcover at A007047 *) Table[2*PolyLog[-n^2, 1/2] - 1 , {n, 0, 29}]
Comments