A328078 Number of regions after n generations of Jim Conant's iterative dissection of a square.
1, 2, 3, 5, 9, 15, 27, 48, 91, 169, 325, 618, 1201, 2319, 4527, 8804, 17227, 33649, 65929, 129046, 252997, 495779, 972339, 1906520, 3739775, 7335029, 14389629, 28227578, 55378713, 108642983, 213148903, 418176700, 820441299, 1609656953, 3158089841, 6196050718
Offset: 0
References
- Jim Conant, Posting to the "Bridges - Art and Mathematics" Facebook page, Oct 05 2019. [The URL is said to be https://www.facebook.com/groups/20666497429/, but I was unable to access it.]
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..42
- Jim Conant, Illustration for a(4) = 9. [Produced by the Mma program with n=2.]
- Jim Conant, Illustration for a(8) = 91. [Produced by the Mma program with n=4.]
- Jim Conant, Illustration for a(10) = 325. [Produced by the Mma program with n=5.]
- Robert Fathauer, Colored illustration for a(16). [The same feature is colored the same at different scales to elucidate the fractal nature of the tiling.]
- Robert Fathauer, The analogous construction starting from a triangle leads to the Sierpinski Gasket
- Douglas McIlroy, Reasoning about the Conant Gasket, Dartmouth Computer Science Technical Report TR2023-1003. https://digitalcommons.dartmouth.edu/cs_tr/385, 2023
- Douglas McIlroy, Reasoning about the Conant Gasket, local copy, with permission.
- Rémy Sigrist, The sizes of the regions along the bottom edge at even generations appear to be given by sequence A330569
- Rémy Sigrist, C# program for A328078
- Rémy Sigrist, C++ program for A328078
- Rémy Sigrist, C++ program for A328078 [with moderate memory use]
- N. J. A. Sloane, Notes on the Conant Gasket, the Conant Lattice, and Associated Sequences, Preliminary version, Aug 23 2020
- N. J. A. Sloane, The Even Conant Lattice
- N. J. A. Sloane, The Odd Conant Lattice
- N. J. A. Sloane, Illustrations for a(1) though a(7).
- N. J. A. Sloane, Colored illustration for a(8) = 91, showing successive stages in the construction. [Thin black lines were used to construct generations 0 through 4, red lines produce generation 5, green = 6, thick black = 7, thick blue = 8.]
- N. J. A. Sloane, Conant's Gasket, Recamán Variations, the Enots Wolley Sequence, and Stained Glass Windows, Experimental Math Seminar, Rutgers University, Sep 10 2020 (video of Zoom talk)
- (Unknown author), A similar-looking fractal If anyone can identify this fractal, please let me know! - _N. J. A. Sloane_, Jan 14 2020
Crossrefs
Programs
-
Mathematica
(*Code written by Jim Conant, Oct 12 2019*) n = 4; size = 2^n; V = Table[0, {size + 1}, {size + 1}]; H = Table[0, {size + 1}, {size + 1}]; Flag = vert; vcol = 2^(n - 1); hcol = 2^(n - 1); down = 1; up = 2; (*************************************************) While[hcol > .9, If[Flag == vert, Flag = horiz; Do[Pen = down; Do[If[Pen == up, If[H[[i, j]] != 0, Pen = down], V[[i, j]] = 1/n; If[H[[i, j]] != 0, Pen = up]], {j, 1, size, 1}], {i, vcol, size - 1, 2*vcol}]; vcol = vcol/2]; If[Flag == horiz, Flag = vert; Do[Pen = down; Do[If[Pen == up, If[V[[i, j]] != 0, Pen = down], H[[i, j]] = 1/n; If[V[[i, j]] != 0, Pen = up]], {i, 1, size, 1}], {j, hcol, size - 1, 2*hcol}]; hcol = hcol/2]; n = n - 1]; (**Display graphics with data from V and H********) G = {}; Do[Do[If[V[[i, j]] != 0, G = Append[G, Line[{{i, j - 1}, {i, j}}]]]; If[H[[i, j]] != 0, G = Append[G, Line[{{i - 1, j}, {i, j}}]]], {i, size}], {j, size}]; G = Join[G, {Line[{{0, 0}, {0, size}}], Line[{{0, 0}, {size, 0}}], Line[{{size, 0}, {size, size}}], Line[{{0, size}, {size, size}}]}]; Show[Graphics[G], AspectRatio -> Automatic]
Formula
Conjectures from Colin Barker, Oct 15 2019: (Start)
G.f.: (1 - 3*x^2 + x^3 - 2*x^4 - 5*x^5 + 8*x^6 - x^7 - 4*x^8 + 8*x^9 - 4*x^10 + 4*x^12) / ((1 - x)*(1 + x^2)*(1 - 2*x^2)*(1 - x - 2*x^2 + 2*x^3 - 4*x^4 + 4*x^6 - 4*x^7)).
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 7*a(n-4) - 4*a(n-5) - 12*a(n-6) + 20*a(n-7) - 12*a(n-8) + 12*a(n-10) - 16*a(n-11) + 8*a(n-12) for n>12.
(End)
Comment from N. J. A. Sloane, Sep 08 2020 (Start)
Gfun still gives the same recurrence and g.f. using all 40 terms.
The seven roots of the denominator polynomial are
-0.871341341681075,
-0.661031992215005,
0.0876691186562792 - 0.808024853721450 I,
0.0876691186562792 + 0.808024853721450 I,
0.509688436780776,
0.923673329901373 - 0.660261157442008 I,
0.923673329901373 + 0.660261157442008 I,
and the magnitudes of the complex roots are:
0.0876691186562792^2 + 0.808024853721450^2 = 0.6605900386; sqrt = 0.8127669030
0.923673329901373^2 + 0.660261157442008^2 = 1.289117216; sqrt = 1.135392979
(End)
Extensions
a(9)-a(26) from Rémy Sigrist, Oct 14 2019
a(27)-a(33) from Rémy Sigrist, Oct 15 2019
a(34)-a(35) added by N. J. A. Sloane, Sep 06 2020 using Rémy Sigrist's C++ program.
Comments