This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328095 #58 Dec 21 2024 13:45:15 %S A328095 0,1,5,6,11,25,52,77,87,111,125,152,215,251,375,376,455,512,521,545, %T A328095 554,736,792,1111,1125,1152,1215,1251,1455,1512,1521,1545,1554,2115, %U A328095 2151,2174,2255,2511,2525,2552,4155,4515,4551,5112,5121,5145,5154,5211,5225,5252,5415,5451,5514,5522,5541,5558,5585,5855,8555,8772,9375 %N A328095 Revenant numbers: numbers k such that k multiplied by the product of all its digits contains k as a substring. %C A328095 Sequence is infinite since 11...1 is always a member. %C A328095 Numbers whose product of digits is a power of ten (and thus necessarily must only have 1,2,4,5,8 as digits) is a subsequence. - _Chai Wah Wu_, Oct 19 2019 %D A328095 Eric Angelini, Posting to Sequence Fans Mailing List, Oct 19 2019 %H A328095 Chai Wah Wu, <a href="/A328095/b328095.txt">Table of n, a(n) for n = 1..10000</a> %H A328095 Eric Angelini, <a href="http://cinquantesignes.blogspot.com/2019/10/revenant-numbers.html">Revenant Numbers</a>, Cinquante Signes, Oct 19 2019. %H A328095 Eric Angelini, <a href="/A328095/a328095.pdf">Revenant Numbers</a>, Cinquante Signes, Oct 19 2019. [Cached copy, pdf file, with permission] %F A328095 A328560 union A328561. %e A328095 87 * 8 * 7 = 4872. As the string 87 is visible in the result, 87 is a revenant. %e A328095 So is 792 because 792 * 7 * 9 * 2 = 99792. %e A328095 And so is 9375 as 9375 * 9 * 3 * 7 * 5 = 8859375. %p A328095 a:= proc(n) option remember; local k; if n=1 then 0 else %p A328095 for k from 1+a(n-1) while searchtext(cat(k), cat(k* %p A328095 mul(i, i=convert(k, base, 10))))=0 do od: k fi %p A328095 end: %p A328095 seq(a(n), n=1..75); # _Alois P. Heinz_, Oct 19 2019 %t A328095 Select[Range[0,10000],SequenceCount[IntegerDigits[#*(Times@@IntegerDigits[ #])],IntegerDigits[#]]>0&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Oct 19 2019 *) %o A328095 (Python) %o A328095 from functools import reduce %o A328095 from operator import mul %o A328095 n, A328095_list = 0, [] %o A328095 while len(A328095_list) < 10000: %o A328095 sn = str(n) %o A328095 if sn in str(n*reduce(mul,(int(d) for d in sn))): %o A328095 A328095_list.append(n) %o A328095 n += 1 # _Chai Wah Wu_, Oct 19 2019 %o A328095 (PARI) is_A328095(n)={my(d,m); if(d=vecprod(digits(n))*n, m=10^logint(n, 10)*10; until(n>d\=10,d%m==n && return(1)),!n)} \\ _M. F. Hasler_, Oct 20 2019 %Y A328095 Subsequences are: A328544, A328560, A328561. %K A328095 nonn,base %O A328095 1,3 %A A328095 _N. J. A. Sloane_, Oct 19 2019