cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328103 Bitwise XOR of trajectories of rule 30 and rule 124, when both are started from a lone 1 cell: a(n) = A110240(n) XOR A267357(n).

This page as a plain text file.
%I A328103 #12 Oct 05 2019 18:21:09
%S A328103 0,4,30,100,398,1748,6510,28628,102590,456132,1642078,7289764,
%T A328103 26336590,116802708,420215854,1865678868,6741198206,29904470916,
%U A328103 107568473246,477629808612,1725756768270,7655529847380,27537572248046,122273029571156,441793665700414,1959816793456452,7049616389341662,31301899019407908,113099196716630990,501713069953322004
%N A328103 Bitwise XOR of trajectories of rule 30 and rule 124, when both are started from a lone 1 cell: a(n) = A110240(n) XOR A267357(n).
%H A328103 Antti Karttunen, <a href="/A328103/b328103.txt">Table of n, a(n) for n = 0..1023</a>
%H A328103 Antti Karttunen, <a href="/A328103/a328103.png">Terms up to a(255) drawn as binary strings, with 1 bit = 3x3 pixels resolution</a>
%H A328103 Antti Karttunen, <a href="/A328103/a328103_1.png">Terms up to a(1023) drawn as binary strings, with 1 bit = 1 pixel resolution</a>
%H A328103 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%F A328103 a(n) = A110240(n) XOR A267357(n), where XOR is bitwise exclusive or (A003987).
%o A328103 (PARI)
%o A328103 A269160(n) = bitxor(n, bitor(2*n, 4*n));
%o A328103 A110240(n) = if(!n,1,A269160(A110240(n-1)));
%o A328103 A269174(n) = bitand(bitor(n,n<<1),bitor(bitxor(n,n<<1),bitxor(n,n<<2)));
%o A328103 A267357(n) = if(!n,1,A269174(A267357(n-1)));
%o A328103 A328103(n) = bitxor(A110240(n),A267357(n));
%o A328103 \\ Use this one for writing b-files:
%o A328103 A328103write(up_to) = { my(s1=1, s2=1); for(n=0,up_to, write("b328103.txt", n, " ", bitxor(s1, s2)); s1 = A269160(s1); s2 = A269174(s2)); };
%o A328103 (Python)
%o A328103 def A269160(n): return(n^((n<<1)|(n<<2)))
%o A328103 def A269174(n): return((n|(n<<1))&((n^(n<<1))|(n^(n<<2))))
%o A328103 def genA328103():
%o A328103     '''Yield successive terms of A328103.'''
%o A328103     s1 = 1
%o A328103     s2 = 1
%o A328103     while True:
%o A328103        yield (s1^s2)
%o A328103        s1 = A269174(s1)
%o A328103        s2 = A269160(s2)
%Y A328103 Cf. A003987, A110240, A267357, A269160, A269174, A328109 (binary weight of terms).
%Y A328103 Cf. also A327971, A327972, A327973, A327976, A328104 for other such combinations, and also A328111.
%K A328103 nonn
%O A328103 0,2
%A A328103 _Antti Karttunen_, Oct 05 2019