This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328104 #17 Oct 05 2019 18:21:16 %S A328104 3,15,59,255,947,4095,15131,65407,242627,1048271,3874811,16743551, %T A328104 62119411,268369791,991927259,4286447359,15902689155,68701773199, %U A328104 253935222715,1097330432511,4071076396851,17587676696575,65007550988187,280916526002175,1042196361379523,4502448248917967,16641933085980923,71914639532751871 %N A328104 a(n) = A163617(A110240(n)) = A110240(n) OR 2*A110240(n). %H A328104 Antti Karttunen, <a href="/A328104/b328104.txt">Table of n, a(n) for n = 0..1023</a> %H A328104 Antti Karttunen, <a href="/A328104/a328104.png">Terms up to a(255) drawn as binary strings, with 1 bit = 3x3 pixels resolution</a> %H A328104 Antti Karttunen, <a href="/A328104/a328104_1.png">Terms up to a(1023) drawn as binary strings, with 1 bit = 1 pixel resolution</a> %H A328104 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %F A328104 a(n) = A163617(A110240(n)) = A110240(n) OR 2*A110240(n). %F A328104 a(n) = (1/2) * (A110240(n) XOR A110240(1+n)). %o A328104 (PARI) %o A328104 A269160(n) = bitxor(n, bitor(2*n, 4*n)); %o A328104 A110240(n) = if(!n,1,A269160(A110240(n-1))); %o A328104 A163617(n) = bitor(n,n<<1); %o A328104 A328104(n) = A163617(A110240(n)); %o A328104 \\ Use this one for writing b-files: %o A328104 A328104write(up_to) = { my(s=1, n=0); for(n=0,up_to, write("b328104.txt", n, " ", bitor(s, s<<1)); s = A269160(s)); }; %o A328104 (Python) %o A328104 def A269160(n): return(n^((n<<1)|(n<<2))) %o A328104 def genA328104(): %o A328104 '''Yield successive terms of A328104.''' %o A328104 s = 1 %o A328104 while True: %o A328104 yield (s|(s<<1)) %o A328104 s = A269160(s) %Y A328104 Cf. A003986, A051023, A110240, A269160, A163617, A328105 (binary weight of terms). %Y A328104 Cf. also A327971, A327972, A327973, A327976, A328103 for other such combinations. %K A328104 nonn %O A328104 0,1 %A A328104 _Antti Karttunen_, Oct 04 2019