This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328122 #18 Aug 08 2024 11:05:29 %S A328122 1,3,36,723,20280,730755,32171580,1673573895,100442870640, %T A328122 6831585584775,519288366989700,43626178967384475,4014060030471090600, %U A328122 401443860155706643275,43359414126089609047500,5030039291029886037279375,623762332206315636458124000,82340968923184527676400655375,11528273478697179256689693556500 %N A328122 Number of rooted level-1 phylogenetic networks with n labeled leaves. %H A328122 François Bienvenu, Jean-Jil Duchamps, Michael Fuchs, and Tsan-Cheng Yu, <a href="https://arxiv.org/abs/2407.19454">The B_2 index of galled trees</a>, arXiv:2407.19454 [q-bio.PE], 2024. See p. 5. %H A328122 Mathilde Bouvel, Philippe Gambette and Marefatollah Mansouri, <a href="http://user.math.uzh.ch/bouvel/publications/BouvelGambetteMansouri.mw">Maple worksheet</a> %H A328122 Mathilde Bouvel, Philippe Gambette and Marefatollah Mansouri, <a href="https://arxiv.org/abs/1909.10460">Counting Phylogenetic Networks of level 1 and 2</a>, arXiv:1909.10460 [math.CO], 2019. %F A328122 Bouvel, Gambette and Mansouri provide (among other results) a closed formula for a(n), an equation and a closed form for the associated exponential generating function, and an asymptotic estimate of a(n). See their Section 5. %e A328122 a(4) = 723 is the number of rooted level-1 phylogenetic networks with 4 labeled leaves. %p A328122 # see links section %Y A328122 Cf. A328121, A328123, A328126. %K A328122 nonn %O A328122 1,2 %A A328122 _Mathilde Bouvel_, Oct 04 2019