cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328132 Exponential (2,3)-perfect numbers: numbers m such that esigma(esigma(m)) = 3m, where esigma(m) is the sum of exponential divisors of m (A051377).

Original entry on oeis.org

300, 2100, 3300, 3900, 5100, 5700, 6900, 8700, 9300, 11100, 12100, 12300, 12900, 14100, 15900, 17700, 18300, 20100, 21300, 21900, 23100, 23700, 23760, 24900, 26700, 27300, 29100, 30300, 30900, 32100, 32700, 33900, 35700, 38100, 39300, 39900, 41100, 41700, 42900
Offset: 1

Views

Author

Amiram Eldar, Oct 04 2019

Keywords

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, p. 53.

Crossrefs

The exponential version of A019281.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ f @@@ FactorInteger[n]; espQ[n_] := esigma[esigma[n]] == 3n; Select[Range[50000], espQ]
  • PARI
    esigma(n) = {my(f = factor(n)); prod(k = 1, #f~, sumdiv(f[k, 2], d, f[k, 1]^d));}
    isok(k) = esigma(esigma(k)) == 3*k; \\ Amiram Eldar, Jan 09 2025

Formula

300 is in the sequence since esigma(300) = 540, and esigma(540) = 900 = 3*300.