cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328136 Primitive exponential abundant numbers: the powerful terms of A129575.

Original entry on oeis.org

900, 1764, 3600, 4356, 4500, 4900, 6084, 7056, 8100, 10404, 12348, 12996, 19044, 22500, 30276, 34596, 44100, 47916, 49284, 60516, 66564, 79092, 79524, 86436, 88200, 101124, 108900, 112500, 125316, 132300, 133956, 152100, 161604, 176400, 176868, 181476, 191844
Offset: 1

Views

Author

Amiram Eldar, Oct 04 2019

Keywords

Comments

For squarefree numbers k, esigma(k) = k, where esigma is the sum of exponential divisors function (A051377). Thus, if m is a term (esigma(m) > 2m) and k is a squarefree number coprime to m, then esigma(k*m) = esigma(k) * esigma(m) = k * esigma(m) > 2*k*m, so k*m is an exponential abundant number. Therefore the sequence of exponential abundant numbers (A129575) can be generated from this sequence by multiplying with coprime squarefree numbers.

Examples

			900 is a term since esigma(900) = 2160 > 2 * 900, and 900 = 2^2 * 3^2 * 5^2 is powerful.
6300 is exponential abundant, since esigma(6300) = 15120 > 2 * 6300, but it is not powerful, 6300 = 2^2 * 3^2 * 5^2 * 7, thus it is not in this sequence. It can be generated as a term of A129575 from 900 by 7 * 900 = 6300, since gcd(7, 900) = 1.
		

Crossrefs

Intersection of A001694 and A129575.

Programs

  • Mathematica
    fun[p_, e_] := DivisorSum[e, p^# &];aQ[n_] := Min[(f = FactorInteger[n])[[;;,2]]] > 1 && Times @@ fun @@@ f > 2n; Select[Range[200000], aQ]