A328143 Number of sequences [(b_1, c_1),...,(b_t, c_t)] such that n = b_1 < b_2 < ... < b_t = A328045(n), all c_i are positive integers less than 4, and b_1^c_1*b_2^c_2*...*b_t^c_t is a fourth power.
3, 3, 2, 2, 1, 12, 2, 12, 12, 1, 12, 192, 12, 768, 12, 12, 3, 12288, 12, 49152, 2, 6, 48
Offset: 0
Examples
For n = 21 the a(21) = 6 solutions are 21^2 * 27^2 * 28^2 = 126^4, 21^3 * 24^2 * 27^1 * 28^1 = 252^4, 21^2 * 25^2 * 27^2 * 28^2 = 630^4, 21^3 * 24^2 * 25^2 * 27^1 * 28^1 = 1260^4, 21^1 * 24^2 * 27^3 * 28^3 = 1512^4, and 21^1 * 24^2 * 25^2 * 27^3 * 28^3 = 7560^4.
Comments