This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328153 #13 May 02 2020 04:50:22 %S A328153 0,0,0,1,4,20,90,455,2352,13132,76540,473660,3069220,20922330, %T A328153 149021600,1109629885,8604815520,69437698160,581661169640, %U A328153 5051885815603,45411759404560,421977921782270,4047693372023070,40034523497947132,407818256494533984,4274309903558446900 %N A328153 Number of set partitions of [n] such that at least one of the block sizes is 3. %H A328153 Alois P. Heinz, <a href="/A328153/b328153.txt">Table of n, a(n) for n = 0..576</a> %H A328153 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A328153 E.g.f.: exp(exp(x)-1) - exp(exp(x)-1-x^3/6). %F A328153 a(n) = A000110(n) - A124504(n). %p A328153 b:= proc(n, k) option remember; `if`(n=0, 1, add( %p A328153 `if`(j=k, 0, b(n-j, k)*binomial(n-1, j-1)), j=1..n)) %p A328153 end: %p A328153 a:= n-> b(n, 0)-b(n, 3): %p A328153 seq(a(n), n=0..27); %t A328153 b[n_, k_] := b[n, k] = If[n==0, 1, Sum[If[j==k, 0, b[n-j, k] Binomial[n-1, j-1]], {j, 1, n}]]; %t A328153 a[n_] := b[n, 0] - b[n, 3]; %t A328153 a /@ Range[0, 27] (* _Jean-François Alcover_, May 02 2020, after Maple *) %Y A328153 Column k=3 of A327884. %Y A328153 Cf. A000110, A124504, A328155. %K A328153 nonn %O A328153 0,5 %A A328153 _Alois P. Heinz_, Oct 05 2019