cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328163 Number of integer partitions of n whose unsigned differences have a different GCD than the GCD of their parts all minus 1.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 4, 2, 5, 5, 9, 5, 15, 9, 19, 16, 28, 16, 44, 21, 55, 38, 73, 34, 109, 46, 130, 73, 170, 66, 251, 78, 287, 137, 364, 119, 522, 135, 590, 236, 759, 190, 1042, 219, 1175, 425, 1460, 306, 2006, 347, 2277, 671, 2780, 471, 3734, 584, 4197, 1087
Offset: 0

Views

Author

Gus Wiseman, Oct 07 2019

Keywords

Comments

Zeros are ignored when computing GCD, and the empty set has GCD 0.

Examples

			The a(2) = 1 through a(12) = 15 partitions (A = 10, B = 11, C = 12):
  (2)  (3)  (4)   (5)  (6)    (7)   (8)     (9)    (A)      (B)     (C)
            (22)       (33)   (52)  (44)    (63)   (55)     (83)    (66)
                       (42)         (62)    (72)   (64)     (92)    (84)
                       (222)        (422)   (333)  (73)     (722)   (93)
                                    (2222)  (522)  (82)     (5222)  (A2)
                                                   (442)            (444)
                                                   (622)            (552)
                                                   (4222)           (633)
                                                   (22222)          (642)
                                                                    (822)
                                                                    (3333)
                                                                    (4422)
                                                                    (6222)
                                                                    (42222)
                                                                    (222222)
		

Crossrefs

The complement to these partitions is counted by A328164.
The GCD of the divisors of n all minus 1 is A258409(n).
The GCD of the prime indices of n all minus 1 is A328167(n).
Partitions whose parts minus 1 are relatively prime are A328170.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],GCD@@Differences[#]!=GCD@@(#-1)&]],{n,0,30}]