A328167 GCD of the prime indices of n, all minus 1.
0, 0, 1, 0, 2, 1, 3, 0, 1, 2, 4, 1, 5, 3, 1, 0, 6, 1, 7, 2, 1, 4, 8, 1, 2, 5, 1, 3, 9, 1, 10, 0, 1, 6, 1, 1, 11, 7, 1, 2, 12, 1, 13, 4, 1, 8, 14, 1, 3, 2, 1, 5, 15, 1, 2, 3, 1, 9, 16, 1, 17, 10, 1, 0, 1, 1, 18, 6, 1, 1, 19, 1, 20, 11, 1, 7, 1, 1, 21, 2, 1, 12
Offset: 1
Keywords
Examples
85 has prime indices {3,7}, so a(85) = GCD(2,6) = 2.
Crossrefs
Positions of 0's are A000079.
Positions of 1's are A328168.
Positions of records (first appearances) are A006005.
The GCD of the prime indices of n is A289508(n).
The GCD of the prime indices of n, all plus 1, is A328169(n).
Looking at divisors instead of prime indices gives A258409.
Partitions whose parts minus 1 are relatively prime are A328170.
Programs
-
Mathematica
Table[GCD@@(PrimePi/@First/@If[n==1,{},FactorInteger[n]]-1),{n,100}]
Comments