This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328168 #6 Oct 13 2019 07:37:50 %S A328168 3,6,9,12,15,18,21,24,27,30,33,35,36,39,42,45,48,51,54,57,60,63,65,66, %T A328168 69,70,72,75,77,78,81,84,87,90,91,93,95,96,99,102,105,108,111,114,117, %U A328168 120,123,126,129,130,132,133,135,138,140,141,143,144,145,147 %N A328168 Numbers whose prime indices minus 1 are relatively prime. %C A328168 A multiset is relatively prime if the GCD of its elements is 1. Zeros are ignored when computing GCD, and the empty set has GCD 0. %C A328168 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A328168 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of partitions whose parts minus one are relatively prime. The enumeration of these partitions by sum is given by A328170. %e A328168 The sequence of terms together with their prime indices begins: %e A328168 3: {2} %e A328168 6: {1,2} %e A328168 9: {2,2} %e A328168 12: {1,1,2} %e A328168 15: {2,3} %e A328168 18: {1,2,2} %e A328168 21: {2,4} %e A328168 24: {1,1,1,2} %e A328168 27: {2,2,2} %e A328168 30: {1,2,3} %e A328168 33: {2,5} %e A328168 35: {3,4} %e A328168 36: {1,1,2,2} %e A328168 39: {2,6} %e A328168 42: {1,2,4} %e A328168 45: {2,2,3} %e A328168 48: {1,1,1,1,2} %e A328168 51: {2,7} %e A328168 54: {1,2,2,2} %e A328168 57: {2,8} %p A328168 q:= n-> igcd(map(i-> numtheory[pi](i[1])-1, ifactors(n)[2])[])=1: %p A328168 select(q, [$1..150])[]; # _Alois P. Heinz_, Oct 13 2019 %t A328168 Select[Range[100],GCD@@(PrimePi/@First/@If[#==1,{},FactorInteger[#]]-1)==1&] %Y A328168 Positions of 1's in A328167. %Y A328168 Numbers whose prime indices are relatively prime are A289509. %Y A328168 The version for prime indices plus 1 is A318981. %Y A328168 The GCD of prime indices is A289508. %Y A328168 Partitions whose parts minus 1 are relatively prime are A328170. %Y A328168 Cf. A000837, A056239, A112798, A258409, A281116, A290103, A328163, A328169. %K A328168 nonn %O A328168 1,1 %A A328168 _Gus Wiseman_, Oct 08 2019