This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328170 #7 Oct 17 2019 14:46:58 %S A328170 0,0,1,1,2,3,5,8,12,18,27,38,53,74,102,137,184,241,317,413,536,687, %T A328170 880,1112,1405,1765,2215,2755,3424,4229,5216,6402,7847,9572,11662, %U A328170 14148,17139,20688,24940,29971,35969,43044,51438,61311,72985,86678,102807,121675 %N A328170 Number of integer partitions of n whose parts minus 1 are relatively prime. %C A328170 A partition is relatively prime if the GCD of its parts is 1. Zeros are ignored when computing GCD, and the empty set has GCD 0. %H A328170 Andrew Howroyd, <a href="/A328170/b328170.txt">Table of n, a(n) for n = 0..1000</a> %F A328170 G.f.: Sum_{d>=1} mu(d)*(-1/(1-x) + 1/(Prod_{k>=0} 1 - x^(k*d + 1))). - _Andrew Howroyd_, Oct 17 2019 %e A328170 The a(2) = 1 through a(9) = 18 partitions: %e A328170 (2) (21) (22) (32) (42) (43) (62) (54) %e A328170 (211) (221) (222) (52) (332) (63) %e A328170 (2111) (321) (322) (422) (72) %e A328170 (2211) (421) (431) (432) %e A328170 (21111) (2221) (521) (522) %e A328170 (3211) (2222) (621) %e A328170 (22111) (3221) (3222) %e A328170 (211111) (4211) (3321) %e A328170 (22211) (4221) %e A328170 (32111) (4311) %e A328170 (221111) (5211) %e A328170 (2111111) (22221) %e A328170 (32211) %e A328170 (42111) %e A328170 (222111) %e A328170 (321111) %e A328170 (2211111) %e A328170 (21111111) %t A328170 Table[Length[Select[IntegerPartitions[n],GCD@@(#-1)==1&]],{n,0,30}] %o A328170 (PARI) seq(n)=Vec(sum(d=1, n-1, moebius(d)*(-1/(1-x) + 1/prod(k=0, n\d, 1 - x*x^(k*d) + O(x*x^n)))), -(n+1)) \\ _Andrew Howroyd_, Oct 17 2019 %Y A328170 The Heinz numbers of these partitions are given by A328168. %Y A328170 Partitions whose parts are relatively prime are A000837. %Y A328170 Partitions whose parts plus 1 are relatively prime are A318980. %Y A328170 The GCD of the prime indices of n, all minus 1, is A328167(n). %Y A328170 Cf. A007359, A018783, A258409, A289509, A328163, A328164. %K A328170 nonn %O A328170 0,5 %A A328170 _Gus Wiseman_, Oct 09 2019