cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328171 Number of (necessarily strict) integer partitions of n with no two consecutive parts divisible.

This page as a plain text file.
%I A328171 #13 Jan 10 2021 08:54:44
%S A328171 1,1,1,1,1,2,1,3,2,4,4,5,4,9,9,10,12,14,16,20,23,29,34,38,41,51,60,66,
%T A328171 78,89,103,119,137,157,180,201,229,261,298,338,379,431,486,547,618,
%U A328171 694,783,876,986,1103,1241,1387,1551,1728,1932,2148,2395,2664,2963
%N A328171 Number of (necessarily strict) integer partitions of n with no two consecutive parts divisible.
%H A328171 Fausto A. C. Cariboni, <a href="/A328171/b328171.txt">Table of n, a(n) for n = 0..330</a>
%e A328171 The a(1) = 1 through a(15) = 10 partitions (A..F = 10..15):
%e A328171   1  2  3  4  5   6  7   8   9    A    B   C    D    E     F
%e A328171               32     43  53  54   64   65  75   76   86    87
%e A328171                      52      72   73   74  543  85   95    96
%e A328171                              432  532  83  732  94   A4    B4
%e A328171                                        92       A3   B3    D2
%e A328171                                                 B2   653   654
%e A328171                                                 643  743   753
%e A328171                                                 652  752   852
%e A328171                                                 832  5432  A32
%e A328171                                                            6432
%t A328171 Table[Length[Select[IntegerPartitions[n],!MatchQ[#,{___,x_,y_,___}/;Divisible[x,y]]&]],{n,0,30}]
%Y A328171 The complement is counted by A328221.
%Y A328171 The Heinz numbers of these partitions are A328603.
%Y A328171 Partitions whose pairs of consecutive parts are relatively prime are A328172, with strict case A328188.
%Y A328171 Partitions with no pair of consecutive parts relatively prime are A328187, with strict case A328220.
%Y A328171 Numbers without consecutive divisible proper divisors are A328028.
%Y A328171 Cf. A000837, A018783, A328026, A328161, A328189, A328194, A328195.
%K A328171 nonn
%O A328171 0,6
%A A328171 _Gus Wiseman_, Oct 11 2019