This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328172 #15 May 10 2021 15:33:27 %S A328172 1,1,2,3,4,6,7,10,12,16,19,24,28,36,43,51,62,74,87,104,122,143,169, %T A328172 195,227,260,302,346,397,455,521,599,686,780,889,1001,1138,1286,1454, %U A328172 1638,1846,2076,2330,2614,2929,3280,3666,4093,4565,5085,5667,6300,7002 %N A328172 Number of integer partitions of n with all pairs of consecutive parts relatively prime. %C A328172 Except for any number of 1's, these partitions must be strict. The fully strict case is A328188. %C A328172 Partitions with no consecutive pair of parts relatively prime are A328187, with strict case A328220. %H A328172 Alois P. Heinz, <a href="/A328172/b328172.txt">Table of n, a(n) for n = 0..1000</a> %e A328172 The a(1) = 1 through a(8) = 12 partitions: %e A328172 (1) (2) (3) (4) (5) (6) (7) (8) %e A328172 (11) (21) (31) (32) (51) (43) (53) %e A328172 (111) (211) (41) (321) (52) (71) %e A328172 (1111) (311) (411) (61) (431) %e A328172 (2111) (3111) (511) (521) %e A328172 (11111) (21111) (3211) (611) %e A328172 (111111) (4111) (5111) %e A328172 (31111) (32111) %e A328172 (211111) (41111) %e A328172 (1111111) (311111) %e A328172 (2111111) %e A328172 (11111111) %p A328172 b:= proc(n, i, s) option remember; `if`(n=0 or i=1, 1, %p A328172 `if`(andmap(j-> igcd(i, j)=1, s), b(n-i, min(n-i, i-1), %p A328172 numtheory[factorset](i)), 0)+b(n, i-1, s)) %p A328172 end: %p A328172 a:= n-> b(n$2, {}): %p A328172 seq(a(n), n=0..60); # _Alois P. Heinz_, Oct 13 2019 %t A328172 Table[Length[Select[IntegerPartitions[n],!MatchQ[#,{___,x_,y_,___}/;GCD[x,y]>1]&]],{n,0,30}] %t A328172 (* Second program: *) %t A328172 b[n_, i_, s_] := b[n, i, s] = If[n == 0 || i == 1, 1, %t A328172 If[AllTrue[s, GCD[i, #] == 1&], b[n - i, Min[n - i, i - 1], %t A328172 FactorInteger[i][[All, 1]]], 0] + b[n, i - 1, s]]; %t A328172 a[n_] := b[n, n, {}]; %t A328172 a /@ Range[0, 60] (* _Jean-François Alcover_, May 10 2021, after _Alois P. Heinz_ *) %Y A328172 The case of compositions is A167606. %Y A328172 The strict case is A328188. %Y A328172 The Heinz numbers of these partitions are given by A328335. %Y A328172 Cf. A000837, A018783, A178470, A328028, A328170, A328171, A328187, A328188 A328220. %K A328172 nonn %O A328172 0,3 %A A328172 _Gus Wiseman_, Oct 12 2019