This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328185 #31 Oct 27 2019 12:56:11 %S A328185 1,3,7,5,11,7,5,9,19,11,23,13,9,15,31,17,35,19,13,21,43,23,47,25,17, %T A328185 27,55,29,59,31,21,33,67,35,71,37,25,39,79,41,83,43,29,45,91,47,95,49, %U A328185 33,51,103,53,107,55,37,57,115,59,119,61,41,63,127,65,131,67 %N A328185 Numerators associated with A328184. %C A328185 Geometric Interpretation: Given n-sided regular polygon "rolling" on a flat surface with constant angular velocity, a(n) is the numerator of the ratio: %C A328185 [("time" taken for any one vertex to move from highest point to lowest point) / ("time" taken for polygon to finish one complete turn)] := b(n). %C A328185 Lim_{n->infinity} b(n) = 1/2 (can be easily proven). %H A328185 Luca Alexander, <a href="/A328185/a328185.txt">about 100000 terms</a> %F A328185 a(n) = numerator((n - 1) / (2*n)) for even n; a(n) = numerator((2*n - 3) / (4*n)) for odd n. %e A328185 For n = 3, a(3) = numerator of ((2*3-3)/4*n) = numerator of (3/12) = numerator of (1/4) = 1. %t A328185 Array[Numerator[(2 (# - 1) - Mod[#, 2])/(4 #)] &, 66, 3] (* _Michael De Vlieger_, Oct 06 2019 *) %o A328185 (PARI) a(n) = {numerator((2*(n-1) - n%2)/(4*n))} \\ _Andrew Howroyd_, Oct 06 2019 %Y A328185 Cf. A328184 (denominators). %K A328185 frac,nonn %O A328185 3,2 %A A328185 _Luca Alexander_, Oct 06 2019