cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328187 Number of integer partitions of n with no pair of consecutive parts relatively prime.

This page as a plain text file.
%I A328187 #13 Dec 26 2020 16:06:54
%S A328187 1,1,1,1,2,1,4,1,5,3,8,1,14,1,16,9,22,3,38,4,46,19,58,9,94,18,106,41,
%T A328187 144,28,221,37,246,92,318,87,465,95,530,198,693,169,963,220,1108,424,
%U A328187 1383,381,1899,492,2216,815,2732,799,3644,1041,4231,1585,5194,1608
%N A328187 Number of integer partitions of n with no pair of consecutive parts relatively prime.
%H A328187 Fausto A. C. Cariboni, <a href="/A328187/b328187.txt">Table of n, a(n) for n = 0..300</a>
%e A328187 The a(1) = 1 through a(15) = 9 partitions (A..F = 10..15):
%e A328187   1  2  3  4   5  6    7  8     9    A      B  C       D  E        F
%e A328187            22     33      44    63   55        66         77       96
%e A328187                   42      62    333  64        84         86       A5
%e A328187                   222     422        82        93         A4       C3
%e A328187                           2222       442       A2         C2       555
%e A328187                                      622       444        644      663
%e A328187                                      4222      633        662      933
%e A328187                                      22222     642        842      6333
%e A328187                                                822        A22      33333
%e A328187                                                3333       4442
%e A328187                                                4422       6422
%e A328187                                                6222       8222
%e A328187                                                42222      44222
%e A328187                                                222222     62222
%e A328187                                                           422222
%e A328187                                                           2222222
%t A328187 Table[Length[Select[IntegerPartitions[n],!MatchQ[#,{___,x_,y_,___}/;GCD[x,y]==1]&]],{n,0,30}]
%Y A328187 The Heinz numbers of these partitions are given by A328336.
%Y A328187 The case of compositions is A178470.
%Y A328187 The strict case is A328220.
%Y A328187 Partitions with all pairs of consecutive parts relatively prime are A328172.
%Y A328187 Cf. A000837, A018783, A328028, A328170, A328171, A328188.
%K A328187 nonn
%O A328187 0,5
%A A328187 _Gus Wiseman_, Oct 12 2019