This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328188 #15 May 10 2021 06:41:13 %S A328188 1,1,1,2,2,3,3,4,5,6,7,8,9,12,15,15,19,23,25,30,35,39,47,52,58,65,75, %T A328188 86,95,109,124,144,165,181,203,221,249,285,316,352,392,438,484,538, %U A328188 599,666,737,813,899,992,1102,1215,1335,1472,1621,1776,1946,2137,2336 %N A328188 Number of strict integer partitions of n with all pairs of consecutive parts relatively prime. %H A328188 Alois P. Heinz, <a href="/A328188/b328188.txt">Table of n, a(n) for n = 0..1000</a> %e A328188 The a(1) = 1 through a(15) = 15 partitions (A..F = 10..15): %e A328188 1 2 3 4 5 6 7 8 9 A B C D E F %e A328188 21 31 32 51 43 53 54 73 65 75 76 95 87 %e A328188 41 321 52 71 72 91 74 B1 85 B3 B4 %e A328188 61 431 81 532 83 543 94 D1 D2 %e A328188 521 432 541 92 651 A3 653 E1 %e A328188 531 721 A1 732 B2 743 654 %e A328188 4321 731 741 C1 752 753 %e A328188 5321 831 652 761 852 %e A328188 921 751 851 951 %e A328188 832 941 A32 %e A328188 5431 A31 B31 %e A328188 7321 B21 6531 %e A328188 5432 7431 %e A328188 6521 7521 %e A328188 8321 54321 %p A328188 b:= proc(n, i, s) option remember; `if`(i*(i+1)/2<n, 0, `if`(n=0, 1, %p A328188 `if`(andmap(j-> igcd(i, j)=1, s), b(n-i, min(n-i, i-1), %p A328188 numtheory[factorset](i)), 0)+b(n, i-1, s))) %p A328188 end: %p A328188 a:= n-> b(n$2, {}): %p A328188 seq(a(n), n=0..60); # _Alois P. Heinz_, Oct 13 2019 %t A328188 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MatchQ[#,{___,x_,y_,___}/;GCD[x,y]>1]&]],{n,0,30}] %t A328188 (* Second program: *) %t A328188 b[n_, i_, s_] := b[n, i, s] = If[i(i + 1)/2 < n, 0, If[n == 0, 1, If[AllTrue[s, GCD[i, #] == 1&], b[n - i, Min[n - i, i - 1], FactorInteger[i][[All, 1]]], 0] + b[n, i - 1, s]]]; %t A328188 a[n_] := b[n, n, {}]; %t A328188 a /@ Range[0, 60] (* _Jean-François Alcover_, May 10 2021, after _Alois P. Heinz_ *) %Y A328188 The case of compositions is A167606. %Y A328188 The non-strict case is A328172. %Y A328188 The Heinz numbers of these partitions are given by A328335. %Y A328188 Partitions with no pairs of consecutive parts relatively prime are A328187. %Y A328188 Cf. A000837, A018783, A178470, A328028, A328170, A328171, A328187, A328220. %K A328188 nonn %O A328188 0,4 %A A328188 _Gus Wiseman_, Oct 13 2019