cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A060768 Pseudo-Kaprekar triples: q such that if q=x+y+z, then q^3=x*10^i + y*10^j + z, where (y*10^j+z < 10^i) and z < 10^j.

Original entry on oeis.org

1, 8, 10, 45, 100, 134, 297, 783, 972, 1000, 1368, 1611, 2322, 2710, 2728, 3086, 4445, 4544, 4949, 5049, 5455, 5554, 7172, 10000, 19908, 21268, 27100, 44443, 55556, 60434, 76581, 77778, 100000, 103239, 133334, 143857, 199728, 208494, 226071
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), Apr 24 2001

Keywords

Comments

True Kaprekar triples (A006887) must have j=n and i=2n, where n is the number of digits in q.

Examples

			134^3=2406104 and 134=24+06+104. 134 is not a Kaprekar triple since the three terms of the sum would need to be 2, 406 and 104. 134 is not a term of A328198 because one addend (06) begins with '0'.
		

Crossrefs

Extensions

Offset changed to 1 by Giovanni Resta, Oct 09 2019

A328199 Triples (a,b,c) such that (a+b+c)^3 = concat(a,b,c), a, b, c > 0, ordered by size of this value.

Original entry on oeis.org

5, 1, 2, 9, 11, 25, 418, 1062, 131, 878, 2442, 1125, 938, 2422, 1184, 1212, 1388, 2349, 1287, 1113, 2649, 1623, 2457, 1375, 1713, 2377, 1464, 3689, 1035, 2448, 7890, 10706, 1312, 17147, 18793, 19616, 22072, 11858, 26504, 47051, 15775, 14952
Offset: 1

Views

Author

M. F. Hasler, Oct 07 2019

Keywords

Comments

The sequence can be considered as a table with rows of length 3, row(n) = a(3n-2 .. 3n).
A variant of Kaprekar and pseudo-Kaprekar triples, cf. A006887 and A060768.
See A328198 and A328200 (sequence of the values a+b+c and concatenated triples) for more information.

Examples

			5+1+2 = 512^(1/3) = 8,
9+11+25 = 91125^(1/3) = 45,
418+1062+131 = (4181062131)^(1/3) = 1611, ...
		

Crossrefs

Cf. A328198 (row sums), A328200 (rows concatenated), A006887 & A291461 (Kaprekar numbers), A060768 (pseudo Kaprekar numbers); A000578 (the cubes), A055642 (number of digits of n).

Programs

  • PARI
    is(n,Ln=A055642(n),n3=n^3,Ln3=A055642(n3))={my(ab,c); for(Lc=Ln3-2*Ln,Ln, [ab,c]=divrem(n3, 10^Lc); n-c<10^(Ln-1) || c < 10^(Lc-1) || for( Lb=Ln3-Ln-Lc,Ln, vecsum(divrem(ab,10^Lb)) == n-c && ab%10^Lb>=10^(Lb-1)&& return(concat(divrem(ab,10^Lb)~,c))))} \\ A055642(n)=logint(n,10)+1 = #digits(n)
    for( Ln=1,oo, for( n=10^(Ln-1),10^Ln-1, (t=is(n,Ln))&& print1(t", ")))

A328200 Cubes of the form N^3 = concat(a,b,c) with N = a+b+c; a, b, c > 0.

Original entry on oeis.org

512, 91125, 4181062131, 87824421125, 93824221184, 121213882349, 128711132649, 162324571375, 171323771464, 368910352448, 7890107061312, 171471879319616, 220721185826504, 470511577514952, 75460133084214033, 78330233506116032, 98316229404133819, 109294197946170875
Offset: 1

Views

Author

M. F. Hasler, Oct 07 2019

Keywords

Comments

A variant of Kaprekar and pseudo-Kaprekar triples, cf. A006887 and A060768.
Leading zeros as in A006887(4), 26198073 = (26 + 198 + 073)^3, are not allowed here.
Even though this may be the most relevant sequence concerning this problem, we consider A328198 (sequence of the values N) as the main entry where all other information can be found. See also A328199 for the triples (a,b,c).

Examples

			512^(1/3) = 8 = 5 + 1 + 2,
91125^(1/3) = 45 = 9 + 11 + 25,
4181062131^(1/3) = 1611 = 418 + 1062 + 131, ...
		

Crossrefs

Cf. A328198 (values of N), A328199 (triples a,b,c), A006887 & A291461 (Kaprekar numbers), A060768 (pseudo Kaprekar numbers); A000578 (the cubes), A055642 (number of digits of n).

Programs

  • PARI
    is(n,Ln=A055642(n),n3=n^3,Ln3=A055642(n3))={my(ab,c); for(Lc=Ln3-2*Ln,Ln, [ab,c]=divrem(n3, 10^Lc); n-c<10^(Ln-1) || c < 10^(Lc-1) || for( Lb=Ln3-Ln-Lc,Ln, vecsum(divrem(ab,10^Lb)) == n-c && ab%10^Lb>=10^(Lb-1)&& return(1)))} \\ A055642(n)=logint(n,10)+1 = #digits(n)
    for( Ln=1,oo, for( n=10^(Ln-1),10^Ln-1, is(n,Ln)&& print1(n^3", ")))
Showing 1-3 of 3 results.