cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328199 Triples (a,b,c) such that (a+b+c)^3 = concat(a,b,c), a, b, c > 0, ordered by size of this value.

Original entry on oeis.org

5, 1, 2, 9, 11, 25, 418, 1062, 131, 878, 2442, 1125, 938, 2422, 1184, 1212, 1388, 2349, 1287, 1113, 2649, 1623, 2457, 1375, 1713, 2377, 1464, 3689, 1035, 2448, 7890, 10706, 1312, 17147, 18793, 19616, 22072, 11858, 26504, 47051, 15775, 14952
Offset: 1

Views

Author

M. F. Hasler, Oct 07 2019

Keywords

Comments

The sequence can be considered as a table with rows of length 3, row(n) = a(3n-2 .. 3n).
A variant of Kaprekar and pseudo-Kaprekar triples, cf. A006887 and A060768.
See A328198 and A328200 (sequence of the values a+b+c and concatenated triples) for more information.

Examples

			5+1+2 = 512^(1/3) = 8,
9+11+25 = 91125^(1/3) = 45,
418+1062+131 = (4181062131)^(1/3) = 1611, ...
		

Crossrefs

Cf. A328198 (row sums), A328200 (rows concatenated), A006887 & A291461 (Kaprekar numbers), A060768 (pseudo Kaprekar numbers); A000578 (the cubes), A055642 (number of digits of n).

Programs

  • PARI
    is(n,Ln=A055642(n),n3=n^3,Ln3=A055642(n3))={my(ab,c); for(Lc=Ln3-2*Ln,Ln, [ab,c]=divrem(n3, 10^Lc); n-c<10^(Ln-1) || c < 10^(Lc-1) || for( Lb=Ln3-Ln-Lc,Ln, vecsum(divrem(ab,10^Lb)) == n-c && ab%10^Lb>=10^(Lb-1)&& return(concat(divrem(ab,10^Lb)~,c))))} \\ A055642(n)=logint(n,10)+1 = #digits(n)
    for( Ln=1,oo, for( n=10^(Ln-1),10^Ln-1, (t=is(n,Ln))&& print1(t", ")))